Answer:
![\frac{32m^{15}}{x^3-x^2}](https://tex.z-dn.net/?f=%5Cfrac%7B32m%5E%7B15%7D%7D%7Bx%5E3-x%5E2%7D)
Step-by-step explanation:
The given expression is: ![\frac{4m^{12}}{x-1}\div \frac{x^2}{8m^3}](https://tex.z-dn.net/?f=%5Cfrac%7B4m%5E%7B12%7D%7D%7Bx-1%7D%5Cdiv%20%5Cfrac%7Bx%5E2%7D%7B8m%5E3%7D)
We multiply by the reciprocal of the second fraction:
![\frac{4m^{12}}{x-1}\times \frac{8m^3}{x^2}](https://tex.z-dn.net/?f=%5Cfrac%7B4m%5E%7B12%7D%7D%7Bx-1%7D%5Ctimes%20%5Cfrac%7B8m%5E3%7D%7Bx%5E2%7D)
We cancel out the common factors to get;
, where
and ![m\ne0](https://tex.z-dn.net/?f=m%5Cne0)
We simplify to get:
![\frac{32m^{15}}{x^3-x^2}](https://tex.z-dn.net/?f=%5Cfrac%7B32m%5E%7B15%7D%7D%7Bx%5E3-x%5E2%7D)
Answer:
500 millilitres
Step-by-step explanation:
I hope it will help you
The slope is 1/2 and the y-intercept is 3/2. those are the steps to graph the equation.
1. 1/2- you count the total (8) and then count the two and all the numbers greater than 5( don’t count 5) that is 4 so it would be 4/8 simplified to 1/2
2. 1/2- count the total (still 8) and how many prime numbers there are (4- 2,3,5, and 7) the answer is 4/8 simplified to 1/2
Answer:
The answer is below
Step-by-step explanation:
Let a complex z = r(cos θ + isinθ), the nth root of the complex number is given as:
![z_1=r^{\frac{1}{n} }(cos(\frac{\theta +2k\pi}{n} )+isin(\frac{\theta +2k\pi}{n} )),\\k=0,1,2,.\ .\ .,n-1](https://tex.z-dn.net/?f=z_1%3Dr%5E%7B%5Cfrac%7B1%7D%7Bn%7D%20%7D%28cos%28%5Cfrac%7B%5Ctheta%20%2B2k%5Cpi%7D%7Bn%7D%20%29%2Bisin%28%5Cfrac%7B%5Ctheta%20%2B2k%5Cpi%7D%7Bn%7D%20%29%29%2C%5C%5Ck%3D0%2C1%2C2%2C.%5C%20.%5C%20.%2Cn-1)
Given the complex number z = 81(cos(3π/8)+isin(3π/8)), the fourth root (i.e n = 4) is given as follows:
![z_{k=0}=81^{\frac{1}{4} }(cos(\frac{\frac{3\pi}{8} +2(0)\pi}{4} )+isin(\frac{\frac{3\pi}{8} +2(0)\pi}{4} ))=3[cos(\frac{3\pi}{32} )+isin(\frac{3\pi}{32})] \\z_{k=0}=3[cos(\frac{3\pi}{32} )+isin(\frac{3\pi}{32})]\\\\z_{k=1}=81^{\frac{1}{4} }(cos(\frac{\frac{3\pi}{8} +2(1)\pi}{4} )+isin(\frac{\frac{3\pi}{8} +2(1)\pi}{4} ))=3[cos(\frac{19\pi}{32} )+isin(\frac{19\pi}{32})] \\z_{k=1}=3[cos(\frac{19\pi}{32} )+isin(\frac{19\pi}{32})]\\\\](https://tex.z-dn.net/?f=z_%7Bk%3D0%7D%3D81%5E%7B%5Cfrac%7B1%7D%7B4%7D%20%7D%28cos%28%5Cfrac%7B%5Cfrac%7B3%5Cpi%7D%7B8%7D%20%20%2B2%280%29%5Cpi%7D%7B4%7D%20%29%2Bisin%28%5Cfrac%7B%5Cfrac%7B3%5Cpi%7D%7B8%7D%20%20%2B2%280%29%5Cpi%7D%7B4%7D%20%29%29%3D3%5Bcos%28%5Cfrac%7B3%5Cpi%7D%7B32%7D%20%29%2Bisin%28%5Cfrac%7B3%5Cpi%7D%7B32%7D%29%5D%20%5C%5Cz_%7Bk%3D0%7D%3D3%5Bcos%28%5Cfrac%7B3%5Cpi%7D%7B32%7D%20%29%2Bisin%28%5Cfrac%7B3%5Cpi%7D%7B32%7D%29%5D%5C%5C%5C%5Cz_%7Bk%3D1%7D%3D81%5E%7B%5Cfrac%7B1%7D%7B4%7D%20%7D%28cos%28%5Cfrac%7B%5Cfrac%7B3%5Cpi%7D%7B8%7D%20%20%2B2%281%29%5Cpi%7D%7B4%7D%20%29%2Bisin%28%5Cfrac%7B%5Cfrac%7B3%5Cpi%7D%7B8%7D%20%20%2B2%281%29%5Cpi%7D%7B4%7D%20%29%29%3D3%5Bcos%28%5Cfrac%7B19%5Cpi%7D%7B32%7D%20%29%2Bisin%28%5Cfrac%7B19%5Cpi%7D%7B32%7D%29%5D%20%5C%5Cz_%7Bk%3D1%7D%3D3%5Bcos%28%5Cfrac%7B19%5Cpi%7D%7B32%7D%20%29%2Bisin%28%5Cfrac%7B19%5Cpi%7D%7B32%7D%29%5D%5C%5C%5C%5C)
![z_{k=2}=81^{\frac{1}{4} }(cos(\frac{\frac{3\pi}{8} +2(2)\pi}{4} )+isin(\frac{\frac{3\pi}{8} +2(2)\pi}{4} ))=3[cos(\frac{35\pi}{32} )+isin(\frac{35\pi}{32})] \\z_{k=2}=3[cos(\frac{35\pi}{32} )+isin(\frac{35\pi}{32})]\\\\z_{k=3}=81^{\frac{1}{4} }(cos(\frac{\frac{3\pi}{8} +2(3)\pi}{4} )+isin(\frac{\frac{3\pi}{8} +2(3)\pi}{4} ))=3[cos(\frac{51\pi}{32} )+isin(\frac{51\pi}{32})] \\z_{k=3}=3[cos(\frac{51\pi}{32} )+isin(\frac{51\pi}{32})]](https://tex.z-dn.net/?f=z_%7Bk%3D2%7D%3D81%5E%7B%5Cfrac%7B1%7D%7B4%7D%20%7D%28cos%28%5Cfrac%7B%5Cfrac%7B3%5Cpi%7D%7B8%7D%20%20%2B2%282%29%5Cpi%7D%7B4%7D%20%29%2Bisin%28%5Cfrac%7B%5Cfrac%7B3%5Cpi%7D%7B8%7D%20%20%2B2%282%29%5Cpi%7D%7B4%7D%20%29%29%3D3%5Bcos%28%5Cfrac%7B35%5Cpi%7D%7B32%7D%20%29%2Bisin%28%5Cfrac%7B35%5Cpi%7D%7B32%7D%29%5D%20%5C%5Cz_%7Bk%3D2%7D%3D3%5Bcos%28%5Cfrac%7B35%5Cpi%7D%7B32%7D%20%29%2Bisin%28%5Cfrac%7B35%5Cpi%7D%7B32%7D%29%5D%5C%5C%5C%5Cz_%7Bk%3D3%7D%3D81%5E%7B%5Cfrac%7B1%7D%7B4%7D%20%7D%28cos%28%5Cfrac%7B%5Cfrac%7B3%5Cpi%7D%7B8%7D%20%20%2B2%283%29%5Cpi%7D%7B4%7D%20%29%2Bisin%28%5Cfrac%7B%5Cfrac%7B3%5Cpi%7D%7B8%7D%20%20%2B2%283%29%5Cpi%7D%7B4%7D%20%29%29%3D3%5Bcos%28%5Cfrac%7B51%5Cpi%7D%7B32%7D%20%29%2Bisin%28%5Cfrac%7B51%5Cpi%7D%7B32%7D%29%5D%20%5C%5Cz_%7Bk%3D3%7D%3D3%5Bcos%28%5Cfrac%7B51%5Cpi%7D%7B32%7D%20%29%2Bisin%28%5Cfrac%7B51%5Cpi%7D%7B32%7D%29%5D)