Answer:
The other side was decreased to approximately .89 times its original size, meaning it was reduced by approximately 11%
Step-by-step explanation:
We can start with the basic equation for the area of a rectangle:
l × w = a
And now express the changes described above as an equation, using "p" as the amount that the width is changed:
(l × 1.1) × (w × p) = a × .98
Now let's rearrange both of those equations to solve for a / l. Starting with the first and easiest:
w = a/l
now the second one:
1.1l × wp = 0.98a
wp = 0.98a / 1.1l
1.1 wp / 0.98 = a/l
Now with both of those equalling a/l, we can equate them:
1.1 wp / 0.98 = w
We can then divide both sides by w, eliminating it
1.1wp / 0.98w = w/w
1.1p / 0.98 = 1
And solve for p
1.1p = 0.98
p = 0.98 / 1.1
p ≈ 0.89
So the width is scaled by approximately 89%
We can double check that too. Let's multiply that by the scaled length and see if we get the two percent decrease:
.89 × 1.1 = 0.979
That should be 0.98, and we're close enough. That difference of 1/1000 is due to rounding the 0.98 / 1.1 to .89. The actual result of that fraction is 0.89090909... if we multiply that by 1.1, we get exactly .98.
The triangle inequality applies.
In order for ACD to be a triangle, the length of AC must lie between CD-DA=0 and CD+DA=8.
In order for ABD to be a triangle, the length of AC must lie between BC-AB=3 and BC+AB=9.
The values common to both these restrictions are numbers between 3 and 8. Assuming we don't want the diagonal to be coincident with any sides, its integer length will be one of ...
{4, 5, 6, 7}
The answer is 15 or 1/4
I hope this helps you
Answer:
Step-by-step explanation:
<em>The linear equation where:</em>
Solution :

