Answer:
The probability is 
Step-by-step explanation:
From the question we are told that
The capacity of an Airliner is k = 300 passengers
The sample size n = 320 passengers
The probability the a randomly selected passenger shows up on to the airport

Generally the mean is mathematically represented as
=>
=>
Generally the standard deviation is

=> 
=> 
Applying Normal approximation of binomial distribution
Generally the probability that there will not be enough seats to accommodate all passengers is mathematically represented as

Here 
=>
Now applying continuity correction we have
=> ![P(X >300 ) = P(Z > \frac{[300.5] - 307.2}{3.50} )](https://tex.z-dn.net/?f=P%28X%20%20%3E300%20%29%20%3D%20%20P%28Z%20%3E%20%20%5Cfrac%7B%5B300.5%5D%20-%20307.2%7D%7B3.50%7D%20%29)
=> 
From the z-table

So

Jamal because he has a higher percentage of shots made 78%>62%
Answer:
What the first person said
<span>Simplifying
0x + 7 + 5x = 2x + 30 + 40
Anything times zero is zero.
0x + 7 + 5x = 2x + 30 + 40
Combine like terms: 0 + 7 = 7
7 + 5x = 2x + 30 + 40
Reorder the terms:
7 + 5x = 30 + 40 + 2x
Combine like terms: 30 + 40 = 70
7 + 5x = 70 + 2x
Solving
7 + 5x = 70 + 2x
Solving for variable 'x'.
Move all terms containing x to the left, all other terms to the right.
Add '-2x' to each side of the equation.
7 + 5x + -2x = 70 + 2x + -2x
Combine like terms: 5x + -2x = 3x
7 + 3x = 70 + 2x + -2x
Combine like terms: 2x + -2x = 0
7 + 3x = 70 + 0
7 + 3x = 70
Add '-7' to each side of the equation.
7 + -7 + 3x = 70 + -7
Combine like terms: 7 + -7 = 0
0 + 3x = 70 + -7
3x = 70 + -7
Combine like terms: 70 + -7 = 63
3x = 63
Divide each side by '3'.
x = 21
Simplifying
x = 21</span>
Answer:
P ( -1 < Z < 1 ) = 68%
Step-by-step explanation:
Given:-
- The given parameters for standardized test scores that follows normal distribution have mean (u) and standard deviation (s.d) :
u = 67.2
s.d = 4.6
- The random variable (X) that denotes standardized test scores following normal distribution:
X~ N ( 67.2 , 4.6^2 )
Find:-
What percent of the data fell between 62.6 and 71.8?
Solution:-
- We will first compute the Z-value for the given points 62.6 and 71.8:
P ( 62.6 < X < 71.8 )
P ( (62.6 - 67.2) / 4.6 < Z < (71.8 - 67.2) / 4.6 )
P ( -1 < Z < 1 )
- Using the The Empirical Rule or 68-95-99.7%. We need to find the percent of data that lies within 1 standard about mean value:
P ( -1 < Z < 1 ) = 68%
P ( -2 < Z < 2 ) = 95%
P ( -3 < Z < 3 ) = 99.7%