The surface area of the triangular prism is 686.6 cm².
Step-by-step explanation:
Step 1:
The volume of a triangular prism can be determined by multiplying its area of the triangular base with the length of the prism.
The base triangle has a base length of 10 cm and assume it has a height of h m.
The volume of the prism
The height of the triangle is 8.66 cm.
Step 2:
The surface area of the triangle is obtained by adding all the areas of the shapes in the prism. There are 2 triangles and 3 rectangles in a triangular prism.
The triangles have a base length of 10 cm and a height of 8.66 cm. A triangles area is half the product of its base length and height.
The rectangles all have a length of 20 cm and a width of 10 cm. The area of a rectangle is the product of its length and width.
The area of the 2 triangles ![= 2 [\frac{1}{2} (10)(8.66)] = 86.6.](https://tex.z-dn.net/?f=%3D%202%20%5B%5Cfrac%7B1%7D%7B2%7D%20%2810%29%288.66%29%5D%20%3D%2086.6.)
The area of the 3 rectangle ![= 3[(20)(10)] = 600.](https://tex.z-dn.net/?f=%3D%203%5B%2820%29%2810%29%5D%20%3D%20600.)
Step 3:
The surface area of the triangular prism 
The surface area of the prism is 686.6 cm².
Answer:
r equals start fraction cap a minus p over p t end fraction
Step-by-step explanation:
Subtract the term non containing r, then divide by the coefficient of r.

Answer:
0.03
3/100
Step-by-step explanation:
because 3 percent of a hundred can be written as a fraction and 3 percent is three one hundreths which can be written as a decimal.
Answer:
10=16[ by cost]
Step-by-step explanation: the cost of 10 chairs is x.
the cost 16 chairs is also x. 10x = 16x
4x is loss.
Profit or Gain = Selling price – Cost price. Loss = Cost price – Selling price. Profit Percentage = [Profit/C.P.]×100. Percentage Loss = [Loss/C.P.]×100.
In simple way, we can say that sp- cp[ when it is a gain], cp -sp[ when it is a loss]. here it is a loss as well as a gain. so do both according to the formula
Answer:
Credit remaining after 21 minutes = $30.4
Step-by-step explanation:
Credit remaining on a phone card is a linear function of the total calling time.
When graphed, let the linear function representing the line is,
y = mx + b
Where 'm' = slope of the line
b = y-intercept
From the graph,
Slope of the line = -0.12
y = -0.12x + b
If this line passes through a point (33, 28.96),
28.96 = -0.12(33) + b
b = 28.96 + 3.96
b = 32.92
Therefore, the linear function is,
f(x) = -0.12x + 32.92
where x = calling time
Credit left in the card after 21 minutes,
f(21) = -0.12(21) + 32.92
= -2.52 + 32.92
= $30.4