Answer:
0.5
Step-by-step explanation:
Solution:-
- The sample mean before treatment, μ1 = 46
- The sample mean after treatment, μ2 = 48
- The sample standard deviation σ = √16 = 4
- For the independent samples T-test, Cohen's d is determined by calculating the mean difference between your two groups, and then dividing the result by the pooled standard deviation.
Cohen's d = 
- Where, the pooled standard deviation (sd_pooled) is calculated using the formula:

- Assuming that population standard deviation and sample standard deviation are same:
SD_1 = SD_2 = σ = 4
- Then,

- The cohen's d can now be evaliated:
Cohen's d = 
Answer:
9(p + 4)
Step-by-step explanation:
One of the unknown variable is p.
First of all, we know that the number is 9 times as big (multiplication) as the new number obtained through the addition of four to p i.e (p + 4).
Translating the word problem into an algebraic expression, we have;
9 * (p + 4) = 9(p + 4)
Simplifying further, we have;
9p + 36
Answer:
The answer is A hope it helps!
Answer:
Step-by-step explanation:
Given the first two numbers of a sequence as 2, 6...
If it is an arithmetic difference, the common difference will be d = 6-2 = 4
Formula for calculating nth term of an ARITHMETIC sequence Tn = a+(n-1)d
a is the first term = 2
d is the common difference = 4
n is the number if terms
Substituting the given values in the formula.
Nth term Tn = 2+(n-1)4
Tn = 2+4n-4
Tn = 4n-4+2
Tn = 4n-2
2) If the sequence us a geometric sequence
Nth term of the sequence Tn = ar^(n-1)
r is the common ratio
r is gotten by the ratio of the terms I.e
r = T2/T1
r = 6/2
r = 3
Since a = 2
Tn = 2(3)^(n-1)
Hence the nth term of the geometric sequence is Tn = 2(3)^(n-1)