1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Marta_Voda [28]
3 years ago
6

Lisa bought stock three years ago and sold it today for a profit of $1,200. this is a _____.

Mathematics
1 answer:
goldenfox [79]3 years ago
8 0
Well if you are looking for the profit margin we need how much is was when she bought it, because it doesn't say, you can't say It's a increase or a decrease, so you could say this is a investment.
But considering you put this under mathematics I assume there is more to this question you forgot to post.
You might be interested in
True or false weight is a measurement of force
expeople1 [14]

Answer:

True I hope this helps Have a great day.

The weight of an object is a measure of the force exerted on the object by gravity, or the force needed to support it.

7 0
3 years ago
What is the mean of this discrete random variable? That is, what is EP), the expected value of X? O A. 32.63 O B. 31.47 O C. 29.
kkurt [141]

According to this formula, we take each observed X value and multiply it by its respective probability. We then add these products to reach our expected value. You may have seen this before referred to as a weighted average. It is known as a weighted average because it takes into account the probability of each outcome and weighs it accordingly. This is in contrast to an unweighted average which would not take into account the probability of each outcome and weigh each possibility equally.

Let's look at a few examples of expected values for a discrete random variable:

Example

 

A fair six-sided die is tossed. You win $2 if the result is a “1,” you win $1 if the result is a “6,” but otherwise you lose $1.

<span>The Probability Distribution for X = Amount Won or Lost<span><span>X+$2+$1-$1</span><span>Probability1/61/64/6</span></span></span>

<span><span>E(X)=$2(<span>16</span>)+$1(<span>16</span>)+(−$1)(<span>46</span>)=$<span><span>−1</span>6</span>=−$0.17</span><span>E(X)=$2(<span>16</span>)+$1(<span>16</span>)+(−$1)(<span>46</span>)=$<span><span>−1</span>6</span>=−$0.17</span></span>

The interpretation is that if you play many times, the average outcome is losing 17 cents per play. Thus, over time you should expect to lose money.

 

Example

 

Using the probability distribution for number of tattoos, let's find the mean number of tattoos per student.

<span>Probabilty Distribution for Number of Tattoos Each Student Has in a Population of Students<span><span>Tattoos01234</span><span>Probability.850.120.015.010.005</span></span></span>

<span><span>E(X)=0(.85)+1(.12)+2(.015)+3(.010)+4(.005)=.20</span><span>E(X)=0(.85)+1(.12)+2(.015)+3(.010)+4(.005)=.20</span></span>

The mean number of tattoos per student is .20.

 

Symbols for Population Parameters

Recall from Lesson 3, in a sample, the mean is symbolized by <span><span>x<span>¯¯¯</span></span><span>x¯</span></span> and the standard deviation by <span>ss</span>. Because the probabilities that we are working with here are computed using the population, they are symbolized using lower case Greek letters. The population mean is symbolized by <span>μμ</span> (lower case "mu") and the population standard deviation by <span>σσ</span>(lower case "sigma").

<span><span> Sample StatisticPopulation Parameter</span><span>Mean<span><span>x<span>¯¯¯</span></span><span>x¯</span></span><span>μμ</span></span><span>Variance<span><span>s2</span><span>s2</span></span><span><span>σ2</span><span>σ2</span></span></span><span>Standard Deviation<span>ss</span><span>σσ</span></span></span>

Also recall that the standard deviation is equal to the square root of the variance. Thus, <span><span>σ=<span><span>(<span>σ2</span>)</span><span>−−−−</span>√</span></span><span>σ=<span>(<span>σ2</span>)</span></span></span>

Standard Deviation of a Discrete Random Variable

Knowing the expected value is not the only important characteristic one may want to know about a set of discrete numbers: one may also need to know the spread, or variability, of these data. For instance, you may "expect" to win $20 when playing a particular game (which appears good!), but the spread for this might be from losing $20 to winning $60. Knowing such information can influence you decision on whether to play.

To calculate the standard deviation we first must calculate the variance. From the variance, we take the square root and this provides us the standard deviation. Conceptually, the variance of a discrete random variable is the sum of the difference between each value and the mean times the probility of obtaining that value, as seen in the conceptual formulas below:

Conceptual Formulas

Variance for a Discrete Random Variable

<span><span><span>σ2</span>=∑[(<span>xi</span>−μ<span>)2</span><span>pi</span>]</span><span><span>σ2</span>=∑[(<span>xi</span>−μ<span>)2</span><span>pi</span>]</span></span>

Standard Deviation for a Discrete Random Variable

<span><span>σ=<span><span>∑[(<span>xi</span>−μ<span>)2</span><span>pi</span></span><span>−−−−−−−−−−−</span>√</span>]</span><span>σ=<span>∑[(<span>xi</span>−μ<span>)2</span><span>pi</span></span>]</span></span>

<span><span>xi</span><span>xi</span></span>= value of the i<span>th </span>outcome
<span><span>μ=E(X)=∑<span>xi</span><span>pi</span></span><span>μ=E(X)=∑<span>xi</span><span>pi</span></span></span>
<span><span>pi</span><span>pi</span></span> = probability of the ith outcome

In these expressions we substitute our result for E(X) into <span>μμ</span> because <span>μμ</span> is the symbol used to represent the mean of a population .

However, there is an easier computational formula. The compuational formula will give you the same result as the conceptual formula above, but the calculations are simplier.

Computational Formulas

Variance for a Discrete Random Variable

<span><span><span>σ2</span>=[∑(<span>x2i</span><span>pi</span>)]−<span>μ2</span></span><span><span>σ2</span>=[∑(<span>xi2</span><span>pi</span>)]−<span>μ2</span></span></span>

Standard Deviation for a Discrete Random Variable

<span><span>σ=<span><span>[∑(<span>x2i</span><span>pi</span>)]−<span>μ2</span></span><span>−−−−−−−−−−−−</span>√</span></span><span>σ=<span>[∑(<span>xi2</span><span>pi</span>)]−<span>μ2</span></span></span></span><span> 
</span>

<span><span>xi</span><span>xi</span></span>= value of the i<span>th </span>outcome
<span><span>μ=E(X)=∑<span>xi</span><span>pi</span></span><span>μ=E(X)=∑<span>xi</span><span>pi</span></span></span>
<span><span>pi</span><span>pi</span></span> = probability of the ith outcome

Notice in the summation part of this equation that we only square each observed X value and not the respective probability. Also note that the <span>μμ</span> is outside of the summation.

Example

Going back to the first example used above for expectation involving the dice game, we would calculate the standard deviation for this discrete distribution by first calculating the variance:

<span>The Probability Distribution for X = Amount Won or Lost<span><span>X+$2+$1-$1</span><span>Probability1/61/64/6</span></span></span>

<span><span><span>σ2</span>=[∑<span>x2i</span><span>pi</span>]−<span>μ2</span>=[<span>22</span>(<span>16</span>)+<span>12</span>(<span>16</span>)+(−1<span>)2</span>(<span>46</span>)]−(−<span>16</span><span>)2</span></span><span><span>σ2</span>=[∑<span>xi2</span><span>pi</span>]−<span>μ2</span>=[<span>22</span>(<span>16</span>)+<span>12</span>(<span>16</span>)+(−1<span>)2</span>(<span>46</span>)]−(−<span>16</span><span>)2</span></span></span>

<span><span>=[<span>46</span>+<span>16</span>+<span>46</span>]−<span>136</span>=<span>5336</span>=1.472</span><span>=[<span>46</span>+<span>16</span>+<span>46</span>]−<span>136</span>=<span>5336</span>=1.472</span></span>

The variance of this discrete random variable is 1.472.

<span><span>σ=<span><span>(<span>σ2</span>)</span><span>−−−−</span>√</span></span><span>σ=<span>(<span>σ2</span>)</span></span></span>

<span><span>σ=<span>1.472<span>−−−−</span>√</span>=1.213</span><span>σ=1.472=1.213</span></span>

The standard deviation of this discrete random vairable is 1.213. hope this helps

7 0
4 years ago
Read 2 more answers
A rectangular yard has area 96 square feet. The width of the yard is 4 feet less than the length. Find the length. in feet, of t
Nikolay [14]

Answer:

24 ft

Step-by-step explanation:

To find the missing length, we start with the area. We know that we have an area of 96 square ft (although i dont know why someone would have such a big yard). We also know that the width of the yard is 4 ft. The next thing we do is divide. Since we multiply the length and width to find the area, we will divide the area by the width to find the missing length. 96/4= 24. Btw here is the weird yard someone has lol ( i made it to the best of my ability)

|----------------------------------------------------------|

|_______________________________|

6 0
3 years ago
Read 2 more answers
Can somebody please help me figure this out?
Vera_Pavlovna [14]

Answer: You would put the 35° and the 4x+7° equal to each other.

Step-by-step explanation:

    1. 4x+7=35  

    2. 4x+7=35   -> Subtract 7 from the positive 7 and the 35

           -7     -7

    3. 4x=28       -> Divide 4x and 28

    4. x=7

5 0
3 years ago
What is the slope of 11y - 3x = 88
Soloha48 [4]

Answer: the slope is 3/11

Step-by-step explanation:

cause you would get y=3/11x+8

5 0
3 years ago
Other questions:
  • What is the area of this figure?
    12·1 answer
  • Identify the slope of the y intercept<br> y= -1/2x-7 <br><br> please help
    5·2 answers
  • Please answer this question!!
    8·1 answer
  • If one can of paint covers 1000cm2 how many cans of paint are needed to paint all 12 cans
    12·1 answer
  • Select whether the equation has a solution or not.
    7·1 answer
  • Factor the expression 15n - 18
    5·2 answers
  • 1 question geometry :) thanks if you help
    9·1 answer
  • Write a negation statement. No shopping cart has three wheels
    9·1 answer
  • I need help with geometry
    12·2 answers
  • I dnt really understand WILL GIVE BRAINLIEST THOUGH
    14·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!