The astroid is 100,000,000 miles away.
It's traveling at a speed of 100,000 miles per day.
100,000,000 ÷ 100,000 = 1,000
1,000 days.
Answer:
(-2,-4) and (4,-6) are the plot points. I wasn't really sure about what your question was exactly so I hope this helps.
Answer:
Option D
Step-by-step explanation:
f(x) =
Transformed form of the function 'f' is 'g'.
g(x) = 
Property of vertical stretch or compression of a function,
k(x) = x
Transformed function → m(x) = kx
Here, k = scale factor
1). If k > 1, function is vertically stretched.
2). If 0 < k < 1, function is vertically compressed.
From the given functions, k = 
Since, k is between 0 and
, function f(x) is vertically compressed by a scale factor
.
g(x) = f(x + 4) represents a shift of function 'f' by 4 units left.
g(x) = f(x - 4) represents a shift of function 'f' by 4 units right.
g(x) = 
Therefore, function f(x) has been shifted by 4 units left to form image function g(x).
Option D is the answer.
Answer:
![r = \sqrt[3]{\frac{3V}{4 \pi}}](https://tex.z-dn.net/?f=r%20%3D%20%5Csqrt%5B3%5D%7B%5Cfrac%7B3V%7D%7B4%20%5Cpi%7D%7D)
Step-by-step explanation:
From the formula of volume of a sphere we have to isolate "r" on one side of the equation i.e. we have to make "r" the subject of the equation.
![V=\frac{4}{3} \pi r^{3}\\\\ \text{Multiplying both sides by 3/4 we get}\\\\\frac{3V}{4} = \pi r^{3}\\\\ \text{Dividing both sides by } \pi \\\\ \frac{3V}{4 \pi} = r^{3}\\\\\text{Takeing cube root of both sides}\\\\\sqrt[3]{\frac{3V}{4 \pi}} = r](https://tex.z-dn.net/?f=V%3D%5Cfrac%7B4%7D%7B3%7D%20%5Cpi%20r%5E%7B3%7D%5C%5C%5C%5C%20%5Ctext%7BMultiplying%20both%20sides%20by%203%2F4%20we%20get%7D%5C%5C%5C%5C%5Cfrac%7B3V%7D%7B4%7D%20%3D%20%5Cpi%20r%5E%7B3%7D%5C%5C%5C%5C%20%5Ctext%7BDividing%20both%20sides%20by%20%7D%20%5Cpi%20%5C%5C%5C%5C%20%5Cfrac%7B3V%7D%7B4%20%5Cpi%7D%20%3D%20r%5E%7B3%7D%5C%5C%5C%5C%5Ctext%7BTakeing%20cube%20root%20of%20both%20sides%7D%5C%5C%5C%5C%5Csqrt%5B3%5D%7B%5Cfrac%7B3V%7D%7B4%20%5Cpi%7D%7D%20%3D%20r)
Therefore:
![r = \sqrt[3]{\frac{3V}{4 \pi}}](https://tex.z-dn.net/?f=r%20%3D%20%5Csqrt%5B3%5D%7B%5Cfrac%7B3V%7D%7B4%20%5Cpi%7D%7D)