The answer is 56! How you do this, is you take 80, and you multiply it by 7. Then you divide that answer by 10. Then you have your answer! I’m really bad at math but I do know how to do that!
Answer:
This is the answer if any problem just ask me
For the sum we have the following properties:
The properties are commutative, asosiative, distributive and neutral element.
Commutative property: When two numbers are added, the result is the same regardless of the order of the addends.
Associative property: When three or more numbers are added, the result is the same regardless of the order in which the addends are added.
Neutral element: The sum of any number and zero is equal to the original number.
Distributive property: The sum of two numbers multiplied by a third number is equal to the sum of each summand multiplied by the third number.<span><span>
</span><span>For subtraction we have:
</span><span> The arithmetic operation of the subtraction (subtraction) is indicated by the minus sign (-) and is the opposite, or inverse, operation of the addition. </span><span>That is, it is an arithmetic operation that serves to find the difference between two numbers.
</span><span>
In subtraction A - B = D
</span><span>A is the minuendo
</span><span>B is the substraendo
</span><span>D is the difference
</span><span>Answer:
</span><span>The properties of addition and subtraction serve to rewrite and simplify calculations.</span></span>
Answer:
9 terms
Step-by-step explanation:
Given:
1, 8, 28, 56, ..., 1
Required
Determine the number of sequence
To determine the number of sequence, we need to understand how the sequence are generated
The sequence are generated using
![\left[\begin{array}{c}n&&r\end{array}\right] = \frac{n!}{(n-r)!r!}](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7Dn%26%26r%5Cend%7Barray%7D%5Cright%5D%20%3D%20%5Cfrac%7Bn%21%7D%7B%28n-r%29%21r%21%7D)
Where n = 8 and r = 0,1....8
When r = 0
![\left[\begin{array}{c}8&&0\end{array}\right] = \frac{8!}{(8-0)!0!} = \frac{8!}{8!0!} = 1](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D8%26%260%5Cend%7Barray%7D%5Cright%5D%20%3D%20%5Cfrac%7B8%21%7D%7B%288-0%29%210%21%7D%20%3D%20%5Cfrac%7B8%21%7D%7B8%210%21%7D%20%3D%201)
When r = 1
![\left[\begin{array}{c}8&&1\end{array}\right] = \frac{8!}{(8-1)!1!} = \frac{8!}{7!1!} = \frac{8 * 7!}{7! * 1} = \frac{8}{1} = 8](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D8%26%261%5Cend%7Barray%7D%5Cright%5D%20%3D%20%5Cfrac%7B8%21%7D%7B%288-1%29%211%21%7D%20%3D%20%5Cfrac%7B8%21%7D%7B7%211%21%7D%20%3D%20%5Cfrac%7B8%20%2A%207%21%7D%7B7%21%20%2A%201%7D%20%3D%20%5Cfrac%7B8%7D%7B1%7D%20%3D%208)
When r = 2
![\left[\begin{array}{c}8&&2\end{array}\right] = \frac{8!}{(8-2)!2!} = \frac{8!}{6!2!} = \frac{8 * 7 * 6!}{6! * 2 *1} = \frac{8 * 7}{2 *1} =2 8](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D8%26%262%5Cend%7Barray%7D%5Cright%5D%20%3D%20%5Cfrac%7B8%21%7D%7B%288-2%29%212%21%7D%20%3D%20%5Cfrac%7B8%21%7D%7B6%212%21%7D%20%3D%20%5Cfrac%7B8%20%2A%207%20%2A%206%21%7D%7B6%21%20%2A%202%20%2A1%7D%20%3D%20%5Cfrac%7B8%20%2A%207%7D%7B2%20%2A1%7D%20%3D2%208)
When r = 3
![\left[\begin{array}{c}8&&3\end{array}\right] = \frac{8!}{(8-3)!3!} = \frac{8!}{5!3!} = \frac{8 * 7 * 6 * 5!}{5! *3* 2 *1} = \frac{8 * 7 * 6}{3 *2 *1} = 56](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D8%26%263%5Cend%7Barray%7D%5Cright%5D%20%3D%20%5Cfrac%7B8%21%7D%7B%288-3%29%213%21%7D%20%3D%20%5Cfrac%7B8%21%7D%7B5%213%21%7D%20%3D%20%5Cfrac%7B8%20%2A%207%20%2A%206%20%2A%205%21%7D%7B5%21%20%2A3%2A%202%20%2A1%7D%20%3D%20%5Cfrac%7B8%20%2A%207%20%2A%206%7D%7B3%20%2A2%20%2A1%7D%20%3D%2056)
When r = 4
![\left[\begin{array}{c}8&&4\end{array}\right] = \frac{8!}{(8-4)!4!} = \frac{8!}{4!3!} = \frac{8 * 7 * 6 * 5 * 4!}{4! *4*3* 2 *1} = \frac{8 * 7 * 6*5}{4*3 *2 *1} = 70](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D8%26%264%5Cend%7Barray%7D%5Cright%5D%20%3D%20%5Cfrac%7B8%21%7D%7B%288-4%29%214%21%7D%20%3D%20%5Cfrac%7B8%21%7D%7B4%213%21%7D%20%3D%20%5Cfrac%7B8%20%2A%207%20%2A%206%20%2A%205%20%2A%204%21%7D%7B4%21%20%2A4%2A3%2A%202%20%2A1%7D%20%3D%20%5Cfrac%7B8%20%2A%207%20%2A%206%2A5%7D%7B4%2A3%20%2A2%20%2A1%7D%20%3D%2070)
When r = 5
![\left[\begin{array}{c}8&&5\end{array}\right] = \frac{8!}{(8-5)!5!} = \frac{8!}{5!3!} = \frac{8 * 7 * 6 * 5!}{5! *3* 2 *1} = \frac{8 * 7 * 6}{3 *2 *1} = 56](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D8%26%265%5Cend%7Barray%7D%5Cright%5D%20%3D%20%5Cfrac%7B8%21%7D%7B%288-5%29%215%21%7D%20%3D%20%5Cfrac%7B8%21%7D%7B5%213%21%7D%20%3D%20%5Cfrac%7B8%20%2A%207%20%2A%206%20%2A%205%21%7D%7B5%21%20%2A3%2A%202%20%2A1%7D%20%3D%20%5Cfrac%7B8%20%2A%207%20%2A%206%7D%7B3%20%2A2%20%2A1%7D%20%3D%2056)
When r = 6
![\left[\begin{array}{c}8&&6\end{array}\right] = \frac{8!}{(8-6)!6!} = \frac{8!}{6!2!} = \frac{8 * 7 * 6!}{6! * 2 *1} = \frac{8 * 7}{2 *1} = 28](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D8%26%266%5Cend%7Barray%7D%5Cright%5D%20%3D%20%5Cfrac%7B8%21%7D%7B%288-6%29%216%21%7D%20%3D%20%5Cfrac%7B8%21%7D%7B6%212%21%7D%20%3D%20%5Cfrac%7B8%20%2A%207%20%2A%206%21%7D%7B6%21%20%2A%202%20%2A1%7D%20%3D%20%5Cfrac%7B8%20%2A%207%7D%7B2%20%2A1%7D%20%3D%2028)
When r = 7
![\left[\begin{array}{c}8&&7\end{array}\right] = \frac{8!}{(8-7)!7!} = \frac{8!}{7!1!} = \frac{8 * 7!}{7! * 1} = \frac{8}{1} = 8](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D8%26%267%5Cend%7Barray%7D%5Cright%5D%20%3D%20%5Cfrac%7B8%21%7D%7B%288-7%29%217%21%7D%20%3D%20%5Cfrac%7B8%21%7D%7B7%211%21%7D%20%3D%20%5Cfrac%7B8%20%2A%207%21%7D%7B7%21%20%2A%201%7D%20%3D%20%5Cfrac%7B8%7D%7B1%7D%20%3D%208)
When r = 8
![\left[\begin{array}{c}8&&8\end{array}\right] = \frac{8!}{(8-8)!8!} = \frac{8!}{8!0!} = 1](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D8%26%268%5Cend%7Barray%7D%5Cright%5D%20%3D%20%5Cfrac%7B8%21%7D%7B%288-8%29%218%21%7D%20%3D%20%5Cfrac%7B8%21%7D%7B8%210%21%7D%20%3D%201)
The full sequence is: 1,8,28,56,70,56,28,8,1
And the number of terms is 9