1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Semmy [17]
3 years ago
14

Is this correct????.????.??.??

Mathematics
1 answer:
yulyashka [42]3 years ago
7 0
Yes the answer is correct
You might be interested in
How to find the answer
Shalnov [3]

its 90 measurement CBG (I think) is corresponding to measurement DAE

7 0
3 years ago
Read 2 more answers
Determine the missing step for solving the quadratic equation by completing the square. 0 = –6x2 + 24x – 5
Pavlova-9 [17]

Step-by-step explanation:

Check the above photos....

8 0
2 years ago
mark borrows $2,100 at an 8% simple intrest rate for 9 months. What is the amount he is being charged for borrowing the money
Taya2010 [7]

Answer:

$ 126

Step-by-step explanation:

9 months is  3/4  of one year

2100 * 3/4 * .08 = 126 dollars interest

6 0
2 years ago
Evaluate the interval (Calculus 2)
Darya [45]

Answer:

2 \tan (6x)+2 \sec (6x)+\text{C}

Step-by-step explanation:

<u>Fundamental Theorem of Calculus</u>

\displaystyle \int \text{f}(x)\:\text{d}x=\text{F}(x)+\text{C} \iff \text{f}(x)=\dfrac{\text{d}}{\text{d}x}(\text{F}(x))

If differentiating takes you from one function to another, then integrating the second function will take you back to the first with a constant of integration.

Given indefinite integral:

\displaystyle \int \dfrac{12}{1-\sin (6x)}\:\:\text{d}x

\boxed{\begin{minipage}{5 cm}\underline{Terms multiplied by constants}\\\\$\displaystyle \int a\:\text{f}(x)\:\text{d}x=a \int \text{f}(x) \:\text{d}x$\end{minipage}}

If the terms are multiplied by constants, take them outside the integral:

\implies 12\displaystyle \int \dfrac{1}{1-\sin (6x)}\:\:\text{d}x

Multiply by the conjugate of 1 - sin(6x) :

\implies 12\displaystyle \int \dfrac{1}{1-\sin (6x)} \cdot \dfrac{1+\sin(6x)}{1+\sin(6x)}\:\:\text{d}x

\implies 12\displaystyle \int \dfrac{1+\sin(6x)}{1-\sin^2(6x)} \:\:\text{d}x

\textsf{Use the identity} \quad \sin^2 x+ \cos^2 x=1:

\implies \sin^2 (6x) + \cos^2 (6x)=1

\implies \cos^2 (6x)=1- \sin^2 (6x)

\implies 12\displaystyle \int \dfrac{1+\sin(6x)}{\cos^2(6x)} \:\:\text{d}x

Expand:

\implies 12\displaystyle \int \dfrac{1}{\cos^2(6x)}+\dfrac{\sin(6x)}{\cos^2(6x)} \:\:\text{d}x

\textsf{Use the identities }\:\: \sec \theta=\dfrac{1}{\cos \theta} \textsf{ and } \tan\theta=\dfrac{\sin \theta}{\cos \theta}:

\implies 12\displaystyle \int \sec^2(6x)+\dfrac{\tan(6x)}{\cos(6x)} \:\:\text{d}x

\implies 12\displaystyle \int \sec^2(6x)+\tan(6x)\sec(6x) \:\:\text{d}x

\boxed{\begin{minipage}{5 cm}\underline{Integrating $\sec^2 kx$}\\\\$\displaystyle \int \sec^2 kx\:\text{d}x=\dfrac{1}{k} \tan kx\:\:(+\text{C})$\end{minipage}}

\boxed{\begin{minipage}{6 cm}\underline{Integrating $ \sec kx \tan kx$}\\\\$\displaystyle \int  \sec kx \tan kx\:\text{d}x= \dfrac{1}{k}\sec kx\:\:(+\text{C})$\end{minipage}}

\implies 12 \left[\dfrac{1}{6} \tan (6x)+\dfrac{1}{6} \sec (6x) \right]+\text{C}

Simplify:

\implies \dfrac{12}{6} \tan (6x)+\dfrac{12}{6} \sec (6x)+\text{C}

\implies 2 \tan (6x)+2 \sec (6x)+\text{C}

Learn more about indefinite integration here:

brainly.com/question/27805589

brainly.com/question/28155016

3 0
2 years ago
3(Y-4) - 2(y-9) + 5(y+6)=0​
kumpel [21]

Answer: Y = -y - 12

Step-by-step explanation:

4 0
3 years ago
Other questions:
  • A dress that normally costs $69.50 is on sale for 40% off. What is the sale price of the dress?
    14·1 answer
  • A jar contains 133. A bigger jar contains 1 2/7 times as many pennies.what is the value of the pennies in the bigger jar
    6·1 answer
  • 3/2+t=1/2 how to slove
    15·2 answers
  • A student estimated the sum
    15·2 answers
  • Simplify each expression
    9·1 answer
  • Solve this equation <br>4-2x-12-2x+1
    6·2 answers
  • Solve. 3 + x &gt; -9 A) x &gt; 3 B) x &gt; -6 C) x &gt; -3 D) x &gt; -12
    7·1 answer
  • Simplify the following expression as much as you can use exponential properties. (6^-2)(3^-3)(3*6)^4
    12·1 answer
  • Find the missing side length
    10·1 answer
  • Help me please will give Brainliest
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!