We know from Euclidean Geometry and the properties of a centroid that GC=2GM. Now GM=sin60*GA=

. Hence CM=GC+GM=3*

. Now, since GM is normal to AB, we have by the pythagoeran theorem that:

Hence, we calculate from this that AC^2= 28, hence AC=2*

=BC. Thus, the perimeter of the triangle is 2+4*

.
Answer:
x=3
y=2
Step-by-step explanation:
Answer:
The roots of the equation are x =
and x = 
and there are no real roots of the equation given above
Step-by-step explanation:
To solve:
5x² − 3x + 17 = 9
or
⇒ 5x² − 3x + 17 - 9 = 0
or
⇒ 5x² − 3x + 8 = 0
Now,
the roots of the equation in the form ax² + bx + c = 0 is given as:
x = 
in the above given equation
a = 5
b = -3
c = 8
therefore,
x = 
or
x = 
or
x =
and x = 
or
x =
and x = 
here i = √(-1)
Hence,
The roots of the equation are x =
and x = 
and there are no real roots of the equation given above
The formula for perimeter is:
<span>P = 2 h + 2 w</span>
where P is perimeter = 120 cm, h is height, w is width
we are also given that: h = (2/3) w, therefore:
P = 2 (2/3) w + 2 w = 120
(4/3) w + 2 w = 120
w = 36 cm
Therefore l is:
l = (2/3) w = 24 cm
<span>Hence the dimension should be 24cm by 36 cm</span>
Subtracting a value from the exponent shifts the graph to the right.
So if you subtract 3, the graph would shift 3 units to the right.