We might choose to write a recursive formula rather than an explicit formula to define a sequence because (D) the sequence is strictly geometric.
<h3>
What is a sequence?</h3>
- A sequence in mathematics is an enumerated collection of items in which repetitions are permitted and order is important. It, like a set, has members (also called elements, or terms).
- The length of the series is defined as the number of items (which could be infinite).
- Unlike a set, the same components can appear numerous times in a sequence at different points, and the order does important.
- Formally, a sequence can be defined as a function from natural numbers (the sequence's places) to the elements at each point.
- The concept of a sequence can be expanded to include an indexed family, which is defined as a function from an index set that may or may not contain integers to another set of elements.
Recursive formulas are commonly used to compute the nth term of a sequence, where a(n) is the sum of all the preceding values.
Using its position, explicit formulas can compute a(n).
Therefore, we might choose to write a recursive formula rather than an explicit formula to define a sequence because (D) the sequence is strictly geometric.
Know more about sequences here:
brainly.com/question/6561461
#SPJ4
Mary = (1/3)x
Erin = x - 8
John = x
Here is your equation:
(1/3)x + (x - 8) + x = 267
Take it from here.
Answer:
50,000 + 3,000 + 200 + 70 + 4
Step-by-step explanation:
Expand. Set all non-zero digits by itself:
53,274 = 50,000 + 3,000 + 200 + 70 + 4
Remember to fill in 0 for all digits. They must keep their value.
~
There is no difference, 6rs-(-2rs) if you get rid of the parenthesis you are left with 6rs- -2rs and two negatives make a positive therefore the answer will become 8rs... I hope this helps :)
Answer:
First option: cos(θ + φ) = -117/125
Step-by-step explanation:
Recall that cos(θ + φ) = cos(θ)cos(φ) - sin(θ)sin(φ)
If sin(θ) = -3/5 in Quadrant III, then cos(θ) = -4/5.
Since tan(φ) = sin(φ)/cos(φ), then sin(φ) = -7/25 and cos(φ) = 24/25 in Quadrant II.
Therefore:
cos(θ + φ) = cos(θ)cos(φ) - sin(θ)sin(φ)
cos(θ + φ) = (-4/5)(24/25) - (-3/5)(-7/25)
cos(θ + φ) = (-96/125) - (21/125)
cos(θ + φ) = -96/125 - 21/125
cos(θ + φ) = -117/125