1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
vampirchik [111]
3 years ago
15

Explain how you decided where to place the decimal in the quotients for 152÷10, 152÷100,152÷1000

Mathematics
1 answer:
WINSTONCH [101]3 years ago
7 0
If the divisor is greater than the dividen then you know that the answer is going to be more than one. But if the divisor is smaller than the dividen then you know that the answer is going to be less than one like a decimal.
You might be interested in
HELP!! PLZ!! I need to get get this right to pass the 6th grade plz help
Harman [31]
23% it shows you what it is right there :)
8 0
3 years ago
Read 2 more answers
What is the answer for this?
ra1l [238]

Answer:

Proved

Step-by-step explanation:

Given

(2 * 10^2) * (3 * 10^5) = 3.5 * 10^7 + 2.5 * 10^7

Required

Prove

On the right hand side, we have:

2 * 10^2 * 3 * 10^5 = 3.5 * 10^7 + 2.5 * 10^7

Rewrite:

2 * 3* 10^2  * 10^5 = 3.5 * 10^7 + 2.5 * 10^7

6* 10^2  * 10^5 = 3.5 * 10^7 + 2.5 * 10^7

Apply law of indices

6* 10^{2+5} = 3.5 * 10^7 + 2.5 * 10^7

6* 10^7 = 3.5 * 10^7 + 2.5 * 10^7

Express 6 as 3.5 + 2.5

(3.5 + 2.5)* 10^7 = 3.5 * 10^7 + 2.5 * 10^7

Open bracket

3.5 *10^7+ 2.5*10^7 = 3.5 * 10^7 + 2.5 * 10^7

Proved

3 0
3 years ago
Mike has g green marbles and y yellow marbles. Tina keeps losing her marbles. She has half as many yellow and 3 less green marbl
madreJ [45]

there you go ............

5 0
3 years ago
Rectangle 1 has length x and width y. Rectangle 2 is made by multiplying each dimension of Rectangle 1 by a factor of K, where k
STALIN [3.7K]

\bold{\huge{\underline{\pink{ Solution }}}}

<h3><u>Given </u><u>:</u><u>-</u><u> </u></h3>

  • <u>Rectangle </u><u>1</u><u> </u><u> </u><u>has </u><u>length </u><u>x</u><u> </u><u>and </u><u>width </u><u>y</u>
  • <u>Rectangle</u><u> </u><u>2</u><u> </u><u>is </u><u>made </u><u>by </u><u>multiplying </u><u>each </u><u>dimensions </u><u>of </u><u>rectangle </u><u>1</u><u> </u><u>by </u><u>a </u><u>factor </u><u>of </u><u>k </u>
  • <u>Where</u><u>, </u><u>k </u><u>></u><u> </u><u>0</u><u> </u><u> </u>

<h3><u>Answer </u><u>1</u><u> </u><u>:</u><u>-</u></h3>

Yes, The rectangle 1 and rectangle 2 are similar .

<h3><u>According </u><u>to </u><u>the </u><u>similarity </u><u>theorem </u><u>:</u><u>-</u></h3>

  • If the ratio of length and breath of both the triangles are same then the given triangles are similar.

<u>Let's </u><u>Understand </u><u>the </u><u>above </u><u>theorem </u><u>:</u><u>-</u>

The dimensions of rectangle 1 are x and y

<u>Now</u><u>, </u>

  • Rectangle 2 is made by multiplying each dimensions of rectangle 1 by a factor of k .

Let assume the value of K be 5

<u>Therefore</u><u>, </u>

The dimensions of rectangle 2 are

\sf{ 5x \:and \:5y }

<u>Now</u><u>, </u><u> </u><u>The </u><u>ratios </u><u>of </u><u>dimensions </u><u>of </u><u>both </u><u>the </u><u>rectangle </u><u>:</u><u>-</u>

  • \bold{Rectangle 1 =  Rectangle 2}

\bold{\dfrac{ x }{y}}{\bold{ = }}{\bold{\dfrac{5x}{5y}}}

\bold{\blue{\dfrac{ x }{y}}}{\bold{\blue{ = }}}{\bold{\blue{\dfrac{x}{y}}}}

<u>From </u><u>above</u><u>, </u>

We can conclude that the ratios of both the rectangles are same

Hence , Both the rectangles are similar

<h3><u>Answer </u><u>2</u><u> </u><u>:</u><u>-</u><u> </u></h3>

<u>Here</u><u>, </u>

We have to proof that, the

  • Perimeter of rectangle 2 = k(perimeter of rectangle 1 )

In the previous questions, we have assume the value of k = 5

<h3><u>Therefore</u><u>, </u></h3>

<u>According </u><u>to </u><u>the </u><u>question</u><u>, </u>

Perimeter of rectangle 1

\sf{ = 2( length + Breath) }

\bold{\pink{= 2( x + y ) }}

Thus, The perimeter of rectangle 1

Perimeter of rectangle 2

\sf{ = 2( length + Breath) }

\sf{ = 2(5x + 5y) }

\sf{ =  2 × 5( x + y) }

\bold{\pink{= 10(x + y) }}

Thus, The perimeter of rectangle 2

<u>According </u><u>to </u><u>the </u><u>given </u><u>condition </u><u>:</u><u>-</u>

  • Perimeter of rectangle 2 = k( perimeter of rectangle 1 )

<u>Subsitute </u><u>the </u><u>required </u><u>values</u><u>, </u>

\sf{ 2(x + y) = 10(x + y)}

\bold{\pink{2x + 2y = 5(2x + 2y) }}

<u>From </u><u>Above</u><u>, </u>

We can conclude that the, Perimeter of rectangle 2 is 5 times of perimeter of rectangle 1 and we assume the value of k = 5.

Hence, The perimeter of rectangle 2 is k times of rectangle 1

<h3><u>Answer 3 :</u></h3>

<u>Here</u><u>, </u>

We have to proof that ,

  • <u>The </u><u>area </u><u>of </u><u>rectangle </u><u>2</u><u> </u><u>is </u><u>k²</u><u> </u><u>times </u><u>of </u><u>the </u><u>area </u><u>of </u><u>rectangle </u><u>1</u><u>.</u>

<u>That </u><u>is</u><u>, </u>

  • Area of rectangle 1 = k²( Area of rectangle)

<h3><u>Therefore</u><u>, </u></h3>

<u>According </u><u>to </u><u>the </u><u>question</u><u>, </u>

<u>Area </u><u>of </u><u>rectangle </u><u>1</u>

\sf{ = Length × Breath }

\sf{ = x × y }

\bold{\red{= xy }}

<u>Area </u><u>of </u><u>rectangle </u><u>2</u>

\sf{ = Length × Breath }

\sf{ = 5x × 5y }

\bold{\red{ = 25xy }}

<u>According </u><u>to </u><u>the </u><u>given </u><u>condition </u><u>:</u><u>-</u>

  • Area of rectangle 1 = k²( Area of rectangle)

\sf{ xy = 25xy }

\bold{\red{xy = (5)²xy }}

<u>From </u><u>Above</u><u>, </u>

We can conclude that the, Area of rectangle 2 is (5)² times of area of rectangle 1 and we have assumed the value of k = 5

Hence, The Area of rectangle 2 is k times of rectangle 1 .

7 0
2 years ago
Use completing the square to solve for x in the equation (x-12)(x+4)= 9.
iragen [17]

Answer:

x = 4 + sqrt(73) or x = 4 - sqrt(73)

Step-by-step explanation by completing the square:

Solve for x:

(x - 12) (x + 4) = 9

Expand out terms of the left hand side:

x^2 - 8 x - 48 = 9

Add 48 to both sides:

x^2 - 8 x = 57

Add 16 to both sides:

x^2 - 8 x + 16 = 73

Write the left hand side as a square:

(x - 4)^2 = 73

Take the square root of both sides:

x - 4 = sqrt(73) or x - 4 = -sqrt(73)

Add 4 to both sides:

x = 4 + sqrt(73) or x - 4 = -sqrt(73)

Add 4 to both sides:

Answer:  x = 4 + sqrt(73) or x = 4 - sqrt(73)

4 0
4 years ago
Other questions:
  • Sin 10 * sin 50 * sin 60 * sin70 =?
    13·2 answers
  • a party planner is reserving rooms for a corporate event and has the most $2000 to spend on renting the space.The sunrise room c
    11·1 answer
  • Write the equation of the line parallel to y=2 and that has a y-intercept of -1
    7·1 answer
  • The perimeter of a rectangular garden is 43.8 feet its length is 12.4 feet. What is its width?
    5·1 answer
  • Please help me with this answer<br> Thank you!
    7·2 answers
  • Factorise the expressions and divide them as directed.​
    5·1 answer
  • Choose the correct description based on the equation. 4x + 2 = 39
    7·1 answer
  • Would someone plz help me out with this
    8·1 answer
  • Identify each expression that is equal to : 24x + 34y
    6·1 answer
  • For each value of u, determine whether it is a solution to<br> - 57 = 5u - 7<br> 2, 3, 10, 0
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!