Answer:
The equation of a parabola is

Step-by-step explanation:
(h,k) is the vertex and (f,k) is the focus.
Thus, f = 1, k = −4.
The distance from the focus to the vertex is equal to the distance from the vertex to the directrix: f - h = h - 2.
Solving the system, we get h = 3/2, k = -4, f = 1.
The standard form is:

The general form is:

The vertex form is:

The axis of symmetry is the line perpendicular to the directrix that passes through the vertex and the focus: y = -4.
The focal length is the distance between the focus and the vertex: 1/2.
The focal parameter is the distance between the focus and the directrix: 1.
The latus rectum is parallel to the directrix and passes through the focus: x = 1.
The length of the latus rectum is four times the distance between the vertex and the focus: 2.
The eccentricity of a parabola is always 1.
The x-intercepts can be found by setting y = 0 in the equation and solving for x.
x-intercept:

The y-intercepts can be found by setting x = 0 in the equation and solving for y.
y-intercepts:


<span>1.Take a measurement in feet.
</span>2.Multiply or divide your measurement by a conversion factor.<span>
</span>
Answer:
96
Step-by-step explanation:
A=Area
Using the formulas

Solving for A



Answer:
A sample of 1068 is needed.
Step-by-step explanation:
In a sample with a number n of people surveyed with a probability of a success of
, and a confidence level of
, we have the following confidence interval of proportions.

In which
z is the zscore that has a pvalue of
.
The margin of error is:

95% confidence level
So
, z is the value of Z that has a pvalue of
, so
.
At 95% confidence, how large a sample should be taken to obtain a margin of error of 0.03 for the estimation of a population proportion?
We need a sample of n.
n is found when M = 0.03.
We have no prior estimate of
, so we use the worst case scenario, which is 
Then






Rounding up
A sample of 1068 is needed.
Answer:
4
Step-by-step explanation:
How many selfies did Tania take? (my first answer would be too many, but that's probably not the answer you're looking for :-) )
We know that each cousin appear 2 or 3 times overall.
If she would have taken each cousin exactly 2 times, that would be 16 cousins/photos
If she would have taken each cousin exactly 3 times, that would be 24 cousins/photos
We know there's exactly 5 cousins per photo...
so we have to find a multiple of 5 cousins/photos that is between 16 and 24.
The only possibility is 20 cousins/photos. 20 / 5 = 4 photos.