9 and 12 are slope-intercept form and 10 and 11 are point-slope form
Let c represent the weight of cashews and p the weight of pecans.
Then c + 10 = total weight of the nut mixture.
An equation for the value of the mixture follows:
$1.50(10 lb) + $0.75c = (c+10)($1.00)
Solve this equation for c: 15 + .75c = c + 10. Subtract .75c from both sides:
15 = 1c - 0.75c + 10. Then 5=0.25c, and c = 5/0.25, or 20.
Need 20 lb of cashews.
Check: the pecans weigh 10 lb and are worth $1.50 per lb, so the total value of the pecans is $15. The total value of the cashews is (20 lb)($0.75/lb), or $15. Does (20 lb + 10 lb)($1/lb) = $15 + $15? Yes. So c= 20 lb is correct.
The answer is variant A.
Because:
if the two angles of a triangle are congruent to two angles of the other triangle , this triangles are similar
Consider the right triangle ABC with legs AB=4, AC=3 and hypotenuse BC=5. Angle B has
and
.
Since O lies in second quadrant
and
.
Answer: .
Answer:
The student's current average score will be 69.2
Step-by-step explanation:
Let first test be TEST A: which is 20 of total and secures 62
Let second test be TEST B: which is 20 of the total marks and has secured 83.
Let third test be TEST C: which is 20 of total and has secured 91.
And now the TEST D which is 25 of total and has secured 88.
Therefore, by multipying across
= 12.4
= 16.6
= 18.2
=22
Now, by adding the scores to get the average score
We get, 69.2.