Answer:
Step-by-step explanation:
$0.30
Step-by-step explanation:
1 bar of candy = $0.20
3 bars of candy = $0.50
To solve, multiply for both:
If you pay for each candy bar individually, they each cost $0.20. Multiply 9 with 0.20:
9 x 0.20 = $1.80
If you pay for the candy bars by 3's, they cost $0.50 each pack. Divide 9 with 3, then multiply by 0.50:
9/3 = 3
3 x 0.50 = $1.50
Subtract the total cost of the individual from the pack:
$1.80 - $1.50 = $0.30
. $0.30 is your answer.
For the case of a line through
(
2
,
7
)
and
(
1
,
−
4
)
we have
slope
m
=
Δ
y
Δ
x
=
−
4
−
7
1
−
2
=
−
11
−
1
=
11
Using the point
(
2
,
7
)
we can write the equation of the line in point slope form as:
y
−
7
=
m
(
x
−
2
)
where the slope
m
=
11
.
That is:
y
−
7
=
11
(
x
−
2
)
To get point intercept form, first expand the right hand side so...
y
−
7
=
11
x
−
(
11
⋅
2
)
=
11
x
−
22
Then add
7
to both sides to get:
y
=
11
x
−
15
=
11
x
+
(
−
15
)
This is point intercept (
y
=
m
x
+
c
) form with slope
m
=
11
and intercept
c
=
−
15
.
Answer:
Yes we can conclude.
Step-by-step explanation:
The sampling distribution of
can be approximated as a Normal Distribution only if:
np and nq are both equal to or greater than 10. i.e.
Both of these conditions must be met in order to approximate the sampling distribution of
as Normal Distribution.
From the given data:
n = 50
p = 0.80
q = 1 - p = 1 - 0.80 = 0.20
np = 50(0.80) = 40
nq = 50(0.20) = 10
This means the conditions that np and nq must be equal to or greater than 10 is being satisfied. So, we can conclude that the sampling distribution of pˆ is approximately a normal distribution