1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
NeX [460]
3 years ago
10

Show me how to get this answer show your work

Mathematics
2 answers:
icang [17]3 years ago
8 0
The measure of angle MKJ is equal to the sum of angles MKL and JKL by the angle addition postulate. that means
2x+10 + 3x-5=80. solve for x...

5x+5=80
5x=75
x=15

now plug 15 in n for x in both angles. you'll see that the measure of both angles is 40. since segment KL cuts the big angle exactly in half, it is the angle bisector. your checked answer is the right one.
Rama09 [41]3 years ago
6 0

We know that angle MKJ is comprised of angle MKL and angle LKJ. That means if we add MKL and LKJ, we should get 80 degrees, which is the measure of angle MKJ.

MKL + LKJ= MKJ \implies \\ 2x+10+3x-5=80 \implies \\ 5x+5=80 \implies\\ 5x=75 \implies \\ x=15

So, we know that our x is 15. That is not enough to tell whether KL is an angle bisector, because we have to evaluate both MKL and LKJ with x=15, so:

MKL=2(15)+10 = 40\\ LKJ=3*15-5=40

So we see that these two angles are actually bisectors, and the third question best describes this phenomenon.

You might be interested in
2+2*3+2*2+4=what is the correct answer?<br> a 12<br> b14<br> c16<br> d32
GaryK [48]

Answer: C

Step-by-step explanation:

2×3=6, 2×2=4, so that leaves you with 2+6+4+4 which adds up to 16

5 0
3 years ago
Read 2 more answers
What is the inverse of f(x)=e^x
enot [183]

Answer:

f^{-1}(x)=\ln{x}

Step-by-step explanation:

An <em>inverse</em> function is any function that "undoes" another function. If we think of the function f as some kind of machine that takes in a number x as input and produces a number f(x) as an output, when we give inverse function f^{-1} the number f(x) as in input, we get x, our original input, as the output f^{-1}(x)

We need a function that undoes f(x)=e^x, and the natural choice for undoing an exponent is with a logarithm. Here, our base is e, so we'll choose \log_e{x}=\ln{x} as our inverse function. Let's see how that works:

f^{-1}(f(x))=\ln{e^x}

\ln{e^x} is the power we have to raise e to to get e^x, which is x, so

f^{-1}(f(x))=\ln{e^x}=x

And we have our function.

8 0
3 years ago
F(x) = x^4- x^4 - 20<br><br> find all zeros by factoring and explaining the steps
Soloha48 [4]
No x-intercept/zero

Step by step

To find x-intercept/zero, substitute f(x)=0

F(x)=-20

0=-20

The statement is false for any value of

X=0

Since there is no solution for f(x)=0, there is no -intercept/Zero

Your welcome:)
5 0
3 years ago
If f(x)=×^2-81andg(x)​
defon

9514 1404 393

Answer:

  the correct choice is marked

Step-by-step explanation:

  f(x)\cdot g(x)=(x^2-81)\dfrac{x+9}{x-9}=\dfrac{(x-9)(x+9)(x+9)}{(x-9)}\\\\=\boxed{(x+9)^2}

3 0
3 years ago
Find <br><img src="https://tex.z-dn.net/?f=%20%5Cfrac%7Bdy%7D%7Bdx%7D%20" id="TexFormula1" title=" \frac{dy}{dx} " alt=" \frac{d
nataly862011 [7]

Answer:

\displaystyle y' = 2x + 3\sqrt{x} + 1

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right<u> </u>

<u>Algebra I</u>

  • Terms/Coefficients
  • Anything to the 0th power is 1
  • Exponential Rule [Rewrite]:                                                                              \displaystyle b^{-m} = \frac{1}{b^m}
  • Exponential Rule [Root Rewrite]:                                                                     \displaystyle \sqrt[n]{x} = x^{\frac{1}{n}}<u> </u>

<u>Calculus</u>

Derivatives

Derivative Notation

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Derivative Rule [Chain Rule]:                                                                                    \displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify</em>

<em />\displaystyle y = (x + \sqrt{x})^2<em />

<em />

<u>Step 2: Differentiate</u>

  1. Chain Rule:                                                                                                        \displaystyle y' = 2(x + \sqrt{x})^{2 - 1} \cdot \frac{d}{dx}[x + \sqrt{x}]
  2. Rewrite [Exponential Rule - Root Rewrite]:                                                     \displaystyle y' = 2(x + x^{\frac{1}{2}})^{2 - 1} \cdot \frac{d}{dx}[x + x^{\frac{1}{2}}]
  3. Simplify:                                                                                                             \displaystyle y' = 2(x + x^{\frac{1}{2}}) \cdot \frac{d}{dx}[x + x^{\frac{1}{2}}]
  4. Basic Power Rule:                                                                                             \displaystyle y' = 2(x + x^{\frac{1}{2}}) \cdot (1 \cdot x^{1 - 1} + \frac{1}{2}x^{\frac{1}{2} - 1})
  5. Simplify:                                                                                                             \displaystyle y' = 2(x + x^{\frac{1}{2}}) \cdot (1 + \frac{1}{2}x^{-\frac{1}{2}})
  6. Rewrite [Exponential Rule - Rewrite]:                                                              \displaystyle y' = 2(x + x^{\frac{1}{2}}) \cdot (1 + \frac{1}{2x^{\frac{1}{2}}})
  7. Multiply:                                                                                                             \displaystyle y' = 2[(x + x^{\frac{1}{2}}) + \frac{x + x^{\frac{1}{2}}}{2x^{\frac{1}{2}}}]
  8. [Brackets] Add:                                                                                                 \displaystyle y' = 2(\frac{2x + 3x^{\frac{1}{2}} + 1}{2})
  9. Multiply:                                                                                                             \displaystyle y' = 2x + 3x^{\frac{1}{2}} + 1
  10. Rewrite [Exponential Rule - Root Rewrite]:                                                     \displaystyle y' = 2x + 3\sqrt{x} + 1

Topic: AP Calculus AB/BC (Calculus I/II)

Unit: Derivatives

Book: College Calculus 10e

4 0
3 years ago
Other questions:
  • The half-life of a radioactive substance is 12 days. After 11 days a sample of the substance has been reduced to a mass of 7 mg.
    14·2 answers
  • Juan plays little league baseball. In 27 at-bats, he had 9 hits. What is the ratio of at-bats to hits?
    7·1 answer
  • 2) A month of the year is randomly selected.
    14·2 answers
  • If f(x)=x+3 and g(x)= x-1 , what is (f g)(26)
    14·1 answer
  • Is x^2+y^2=16 a function
    6·1 answer
  • A non-profit organization provides homeless children with backpacks filled with school supplies. For the last 5 years the organi
    12·1 answer
  • Square root -100=___+___i
    14·1 answer
  • A basketball drops from a hieght of 76 in. On bounce 1, it rebounds to a hieght of 38 in. On bounce 2, it rebounds to a hieght o
    11·2 answers
  • Please answer thisss &lt;3
    15·1 answer
  • How many different arrangements are there of the letters in the word CORRECT?
    9·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!