Answer:
Energy pyramids is representation of food chain where producers lie at the base of pyramid followed by primary, secondary and tertiary consumer. A tertiary consumer lies at the top of the energy pyramid .
Explanation:
An ecological pyramid is a chronological arrangement of organism in which the organism producing the food lies at the base of pyramid and remaining all organism lie above it.
Each level of an ecological pyramid is called a trophic level and an organism lying at any trophic level feed upon organism lying in trophic level prior to it.
Energy transferred to an organism lying at certain trophic level is 10% of the energy contained in an organism lying at its lower trophic level. remaining 90% of the energy is used by an organism for its internal metabolic process.
Answer:
There are many points at which eukaryotic gene expression can be controlled, through pretranscriptional control, transcriptional control, and posttranscriptional control
Explanation:
The pretranscriptional control determines the accessibility of chromatin to the transcription machinery. It is affected by supercoiling and methylation. It is also known as epigenetic regulation, and it does not depend on the sequence but on the conformation of the DNA.
While transcriptional control determines the frequency and / or speed of transcription initiation through the accessibility of the start sites, the availability of transcription factors and the effectiveness of promoters.
The post-transcriptional control is the one that is exercised once the transcript has finished synthesizing. It can be of several types:
• Maturation control: As the RNA adjustment can be made.
• Transport control: Most RNA has to go out to the cytoplasm to perform its function. For this they have to cross the pores of the nuclear membrane, where you can select the RNAs that will be transported and those that will not.
• Stability control: The half-life of RNA can be regulated by the expression of RNAs or mRNA stabilizing proteins in the cytoplasm.
• Translational control: It is exercised on the frequency with which the mRNAs begin to be translated. It can also affect the frequency with which proteins mature and the availability of enzymatic effectors.
The four levels of protein structure are distinguished from one another by the degree of complexity in the polypeptide chain. A single protein molecule may contain one or more of the protein structure types: primary, secondary, tertiary, and quaternary structure. 1. Primary Structure: describes the unique order in which amino acids are linked together to form a protein.
2. Secondary Structure: refers to the coiling or folding of a polypeptide chain that gives the protein its 3-D shape. There are two types of secondary structures observed in proteins. One type is the alpha (α) helix structure. This structure resembles a coiled spring and is secured by hydrogen bonding in the polypeptide chain. The second type of secondary structure in proteins is the beta (β) pleated sheet. This structure appears to be folded or pleated and is held together by hydrogen bonding between polypeptide units of the folded chain that lie adjacent to one another
3. Tertiary Structure: refers to the comprehensive 3-D structure of the polypeptide chain of a protein.
4. Quaternary Structure: is the structure of a protein macromolecule formed by interactions between multiple polypeptide chains. Each polypeptide chain is referred to as a subunit. Proteins with quaternary structure may consist of more than one of the same type of protein subunit.
1. Eukrayotes cells contain membrane-bound organelles, such as the nucleus, while prokaryotes cells do not.
2. Eukaryotes are often multicellular whilst prokaryotes are unicellular. Although there are some exceptions –unicellular eukaryotes include amoebas, paramecium, yeast.
hope this helps!