I believe the answer should be 4 and 2
Answer:
When x =1, y = 3(1) + 4 = 7
When x = 2, y = 3(2) + 4 = 10
When x = 3, y = 3(3) + 4 = 13
Answer:
Step-by-step explanation:
tan Θ + tan 2Θ + √3 tan Θ tan 2Θ = √3
tan Θ + tan 2Θ = √3 - √3 tan Θ tan 2Θ
tan Θ + tan 2Θ = √3 ( 1 - tan Θ tan 2Θ)
(tan Θ + tan 2Θ) / (1 - tanΘ tan 2Θ) = √3
tan(Θ + 2Θ) = √3
tan 3Θ = tan (
) we know tan Θ = tan α; Θ = nΠ + α, n belongs to z
3Θ = nΠ + Π/3
Θ = nπ/3 + Π/9 for all n in Z
Step-by-step explanation:
In triangles BAD and BCD ,
BD=BD (common)
angle BDA= angle BCD {90°each(given)}
AD=DC (given)
.•. traingle BAD is congruent to triangle BCD (SAS criterion)
Hence , angle A = angle C (CPCT)
Tan9−tan27−tan63−tan81
tan9+tan81−tan27−tan63
sin9/cos9+sin81/cos81−sin27/cos27−sin63/cos63
sin90/cos81cos9−sin90/cos63cos27
1/sin9cos9−1/sin27cos27
2/sin18−2/sin54
(2)sin54−sin18/sin18sin54
4cos36sin18/sin18cos36=4