1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Westkost [7]
3 years ago
14

6n + 9 = -3 - 21 - 6

Mathematics
1 answer:
denis23 [38]3 years ago
3 0
6n+9=-3-21-6
subtract the numbers:-3-21-6=-30
6n+9=-30
subtract 9 from both sides
6n+9-9=-30-9
simplify
6n=-39
divide both sides by 6
\frac{6n}{6}= \frac{-39}{6}
n= \frac{-13}{6}
decimal n=-6.5
Hope this helps :)
You might be interested in
Please help me to prove this!​
Ymorist [56]

Answer:  see proof below

<u>Step-by-step explanation:</u>

Given: A + B + C = π              → A + B = π - C

                                              → B + C = π - A

                                              → C + A = π - B

                                              → C = π - (B +  C)

Use Sum to Product Identity:  cos A + cos B = 2 cos [(A + B)/2] · cos [(A - B)/2]

Use the Sum/Difference Identity: cos (A - B) = cos A · cos B + sin A · sin B

Use the Double Angle Identity: sin 2A = 2 sin A · cos A

Use the Cofunction Identity: cos (π/2 - A) = sin A

<u>Proof LHS → Middle:</u>

\text{LHS:}\qquad \qquad \cos \bigg(\dfrac{A}{2}\bigg)+\cos \bigg(\dfrac{B}{2}\bigg)+\cos \bigg(\dfrac{C}{2}\bigg)

\text{Sum to Product:}\qquad 2\cos \bigg(\dfrac{\frac{A}{2}+\frac{B}{2}}{2}\bigg)\cdot \cos \bigg(\dfrac{\frac{A}{2}-\frac{B}{2}}{2}\bigg)+\cos \bigg(\dfrac{C}{2}\bigg)\\\\\\.\qquad \qquad \qquad \qquad =2\cos \bigg(\dfrac{A+B}{4}\bigg)\cdot \cos \bigg(\dfrac{A-B}{4}\bigg)+\cos \bigg(\dfrac{C}{2}\bigg)

\text{Given:}\qquad \quad =2\cos \bigg(\dfrac{A+B}{4}\bigg)\cdot \cos \bigg(\dfrac{A-B}{4}\bigg)+\cos \bigg(\dfrac{\pi -(A+B)}{2}\bigg)

\text{Sum/Difference:}\quad  =2\cos \bigg(\dfrac{A+B}{4}\bigg)\cdot \cos \bigg(\dfrac{A-B}{4}\bigg)+\sin \bigg(\dfrac{A+B}{2}\bigg)

\text{Double Angle:}\quad  =2\cos \bigg(\dfrac{A+B}{4}\bigg)\cdot \cos \bigg(\dfrac{A-B}{4}\bigg)+\sin \bigg(\dfrac{2(A+B)}{2(2)}\bigg)\\\\\\.\qquad \qquad  \qquad =2\cos \bigg(\dfrac{A+B}{4}\bigg)\cdot \cos \bigg(\dfrac{A-B}{4}\bigg)+2\sin \bigg(\dfrac{A+B}{4}\bigg)\cdot \cos \bigg(\dfrac{A+B}{4}\bigg)

\text{Factor:}\quad  =2\cos \bigg(\dfrac{A+B}{4}\bigg)\bigg[ \cos \bigg(\dfrac{A-B}{4}\bigg)+\sin \bigg(\dfrac{A+B}{4}\bigg)\bigg]

\text{Cofunction:}\quad  =2\cos \bigg(\dfrac{A+B}{4}\bigg)\bigg[ \cos \bigg(\dfrac{A-B}{4}\bigg)+\cos \bigg(\dfrac{\pi}{2}-\dfrac{A+B}{4}\bigg)\bigg]\\\\\\.\qquad \qquad \qquad =2\cos \bigg(\dfrac{A+B}{4}\bigg)\cdot \cos \bigg(\dfrac{A-B}{4}\bigg)+\cos \bigg(\dfrac{2\pi-(A+B)}{4}\bigg)\bigg]

\text{Sum to Product:}\ 2\cos \bigg(\dfrac{A+B}{4}\bigg)\bigg[2 \cos \bigg(\dfrac{2\pi-2B}{2\cdot 4}\bigg)\cdot \cos \bigg(\dfrac{2A-2\pi}{2\cdot 4}\bigg)\bigg]\\\\\\.\qquad \qquad \qquad =4\cos \bigg(\dfrac{A+B}{4}\bigg)\cdot \cos \bigg(\dfrac{\pi-B}{4}\bigg)\cdot \cos \bigg(\dfrac{\pi -A}{4}\bigg)

\text{Given:}\qquad \qquad 4\cos \bigg(\dfrac{\pi -C}{4}\bigg)\cdot \cos \bigg(\dfrac{\pi-B}{4}\bigg)\cdot \cos \bigg(\dfrac{\pi -A}{4}\bigg)\\\\\\.\qquad \qquad \qquad =4\cos \bigg(\dfrac{\pi -A}{4}\bigg)\cdot \cos \bigg(\dfrac{\pi-B}{4}\bigg)\cdot \cos \bigg(\dfrac{\pi -C}{4}\bigg)

LHS = Middle \checkmark

<u>Proof Middle → RHS:</u>

\text{Middle:}\qquad 4\cos \bigg(\dfrac{\pi -A}{4}\bigg)\cdot \cos \bigg(\dfrac{\pi-B}{4}\bigg)\cdot \cos \bigg(\dfrac{\pi -C}{4}\bigg)\\\\\\\text{Given:}\qquad \qquad 4\cos \bigg(\dfrac{B+C}{4}\bigg)\cdot \cos \bigg(\dfrac{C+A}{4}\bigg)\cdot \cos \bigg(\dfrac{A+B}{4}\bigg)\\\\\\.\qquad \qquad \qquad =4\cos \bigg(\dfrac{A+B}{4}\bigg)\cdot \cos \bigg(\dfrac{B+C}{4}\bigg)\cdot \cos \bigg(\dfrac{C+A}{4}\bigg)

Middle = RHS \checkmark

3 0
3 years ago
!!!!!!!!!!!BRAINLIEST!!!!!!!!!!!!!
navik [9.2K]

Answer:

3x+6>12

X=4

3x4=12+6=18  

18>12

Step-by-step explanation:

8 0
3 years ago
Read 2 more answers
Write the ratio 2/7 over 3/7 in simplest form. Help Please!!! Need answer ASAP
sveticcg [70]
<h3>Answer:  2/3</h3>

============================================

Work Shown:

\frac{2}{7} \div \frac{3}{7}\\\\\\\frac{2}{7} \times \frac{7}{3}\\\\\\\frac{2*7}{7*3}\\\\\\\frac{2}{3}\\\\\\

When dividing fractions, you flip the second fraction and multiply (step 2).

Note in the last step, the 7's cancel out.

7 0
3 years ago
Read 2 more answers
Find the inverse of this function. Show your steps.
PolarNik [594]

Answer:

Step-by-step explanation:

First, replace f(x) with y . ...

Replace every x with a y and replace every y with an x .

Solve the equation from Step 2 for y . ...

Replace y with f−1(x) f − 1 ( x ) . ...

Verify your work by checking that (f∘f−1)(x)=x ( f ∘ f − 1 ) ( x ) = x and (f−1∘f)(x)=x ( f − 1 ∘ f ) ( x ) = x are both true.

7 0
3 years ago
Helppppp meee plzz
Vikki [24]
1 and 4


All angles and sides are congruent:)
5 0
3 years ago
Other questions:
  • Can i get the answer please
    14·1 answer
  • Write a problem that the expression 3(-7) - 10 + 25 = -6 could represent
    7·1 answer
  • 15 5 6 6 19 4 5 5 3 4 5 19 5 4 6<br> What is the mean? Round your answer to the nearest tenth.
    6·1 answer
  • There are 36 inches in one yard. how many inches are there in the 8 yards? how many feet is 8 yards?
    14·1 answer
  • Fill in the blank. ASAP . . . . .
    9·1 answer
  • Olivia's sock drawer has a combination of black and white socks. She has twice as many white socks as black socks. What is the p
    7·1 answer
  • ) Solve the equation 3x²-7x-6=0 by completing the square method​
    10·1 answer
  • Solve, show all of work. Help plz!!<br><br> 5-4x-2x≤-6(x-2)
    10·1 answer
  • Problem:<br> −(−8y−6.6z−10)<br> Please help me if possible!
    11·1 answer
  • 25%x4000=?<br><br> With explanation, please
    5·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!