Answer:
148.5 meters^3
Step-by-step explanation:
The volume of a rectangular prism can be found using the following formula.
V=l*w*h
The length is 6 meters. The height is 4.5 meters. The width is 5.5 meters. Substitute these values into the formula.
V=6*5.5*4.5
Multiply all the values together
V=33*4.5
V=148.5
Add appropriate units. Volume uses units^3 and the units are meters.
V=148.5 meters^3
The volume of the rectangular prism is 148.5 cubic meters.
Y= -2+21
This is because the slope needs to be the negative reciprocal of 1/2 so the slope is -2 then you take the point (5,11) and plug that an the -2 into y=m(x)+b and you solve for b. In the end you get 21
<h3>
Answer: -13</h3>
=======================================
Explanation:
g(-3) = 2 means x = -3 and y = 2 pair up together to form the point (-3,2)
g(1) = -4 means we have the point (1,-4)
Find the slope of the line through the two points (-3,2) and (1,-4)
m = (y2-y1)/(x2-x1)
m = (-4-2)/(1-(-3))
m = (-4-2)/(1+3)
m = -6/4
m = -3/2
m = -1.5
The general slope intercept form y = mx+b turns into y = -1.5x+b after replacing m with -1.5
Plug in (x,y) = (-3,2) which is one of the points mentioned earlier and we end up with this new equation: 2 = -1.5*(-3) + b
Let's solve for b
2 = -1.5*(-3)+b
2 = 4.5 + b
2-4.5 = 4.5+b-4.5 .... subtract 4.5 from both sides
-2.5 = b
b = -2.5
Therefore, y = mx+b becomes y = -1.5x-2.5 meaning the g(x) function is g(x) = -1.5x-2.5
The last step is to plug in x = 7 and compute
g(x) = -1.5*x - 2.5
g(7) = -1.5*7 - 2.5
g(7) = -10.5 - 2.5
g(7) = -13
Answer:
(a) E(X) = -2p² + 2p + 2; d²/dp² E(X) at p = 1/2 is less than 0
(b) 6p⁴ - 12p³ + 3p² + 3p + 3; d²/dp² E(X) at p = 1/2 is less than 0
Step-by-step explanation:
(a) when i = 2, the expected number of played games will be:
E(X) = 2[p² + (1-p)²] + 3[2p² (1-p) + 2p(1-p)²] = 2[p²+1-2p+p²] + 3[2p²-2p³+2p(1-2p+p²)] = 2[2p²-2p+1] + 3[2p² - 2p³+2p-4p²+2p³] = 4p²-4p+2-6p²+6p = -2p²+2p+2.
If p = 1/2, then:
d²/dp² E(X) = d/dp (-4p + 2) = -4 which is less than 0. Therefore, the E(X) is maximized.
(b) when i = 3;
E(X) = 3[p³ + (1-p)³] + 4[3p³(1-p) + 3p(1-p)³] + 5[6p³(1-p)² + 6p²(1-p)³]
Simplification and rearrangement lead to:
E(X) = 6p⁴-12p³+3p²+3p+3
if p = 1/2, then:
d²/dp² E(X) at p = 1/2 = d/dp (24p³-36p²+6p+3) = 72p²-72p+6 = 72(1/2)² - 72(1/2) +6 = 18 - 36 +8 = -10
Therefore, E(X) is maximized.