In order to accelerate the dragster at a speed

, its engine must do a work equal to the increase in kinetic energy of the dragster. Since it starts from rest, the initial kinetic energy is zero, so the work done by the engine to accelerate the dragster to 100 m/s is

however, we must take into account also the fact that there is a frictional force doing work against the dragster, and the work done by the frictional force is:

and the sign is negative because the frictional force acts against the direction of motion of the dragster.
This means that the total work done by the dragster engine is equal to the work done to accelerate the dragster plus the energy lost because of the frictional force, which is

:

So, the power delivered by the engine is the total work divided by the time, t=7.30 s:

And since 1 horsepower is equal to 746 W, we can rewrite the power as
Hi there! Lets see!
- m is mass, and its units are kg
- k is the elastic constant measured in newtons per meter (N/m), or kilograms per second squared kg/s²
Therefore:
![\sqrt{\dfrac{m}{k}} =\sqrt{\dfrac{[kg]}{[\dfrac{kg}{s^2}]}} =\sqrt{\dfrac{[kg]}{[kg]}\cdot s^2} = \sqrt{[s]^2} = s](https://tex.z-dn.net/?f=%5Csqrt%7B%5Cdfrac%7Bm%7D%7Bk%7D%7D%20%3D%5Csqrt%7B%5Cdfrac%7B%5Bkg%5D%7D%7B%5B%5Cdfrac%7Bkg%7D%7Bs%5E2%7D%5D%7D%7D%20%20%3D%5Csqrt%7B%5Cdfrac%7B%5Bkg%5D%7D%7B%5Bkg%5D%7D%5Ccdot%20s%5E2%7D%20%3D%20%5Csqrt%7B%5Bs%5D%5E2%7D%20%3D%20s)
The period is given in seconds so the formula is dimensionally correct.
The example says skateboard. Something to do a vehicle. Motorcycle or bike are both vehicles which uses the following energy.
•responsiveness to the environment;
•growth and change;
•ability to reproduce;
•have a metabolism and breathe;
•maintain homeostasis;
•being made of cells; and.
•passing traits onto offspring.