1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
defon
4 years ago
15

Consider the medium of air as defined by the use of radio frequency. What made some of the early standards so slow compared to t

oday's 802.11n 300Mbps and higher bandwidth
Physics
1 answer:
Tanzania [10]4 years ago
3 0

Answer:

Explanation:

Earliest standards were dependent on a single frequency/channel to both send and receive. This shared medium creates the same problem as half-duplex coax cable. Because receivers had to wait for the signal before sending a response, this reduced the overall bandwidth.

Other factors affect wireless signal propagation, too, including RF interference, antenna choice, and obstacles such as walls, trees, and even weather (precipitation, for example).

You might be interested in
To completely describe the motion of an object, you need
notsponge [240]

Answer:

D

Explanation:

7 0
3 years ago
A light rope is attached to a block with mass 3.60 kg that rests on a frictionless, horizontal surface. The horizontal rope pass
Readme [11.4K]

Answer and Explanation:

(a) The fre-body diagrams for each block is shown below. In the block of mass 3.60 kg, there are 3 forces acting on it: horizontal force due to the rope (F_{t}), vertical gravitational force (F_{g}) and vertical normal force (F_{n}), due to the surface. Since there is no vertical movement, F_{g} and F_{n} cancels it out. So, for this block, net force is horizontal due to the rope F_{t}.

The block of mass m is hanging from the pulley, so there is the force of the rope (F_{t}) and the gravitational force (F_{g}). Both are vertical, because there is no surface "holding" block m.

(b) Since both blocks are attached to each other, the acceleration will be the same. To calculate it, we use the Second Law of Motion:

F_{r}=m.a

a=\frac{F_{r}}{m}

a=\frac{18.8}{3.6}

a = 5.22

The acceleration of either block is 5.22 m/s².

(c) Block m has 2 forces acting on it: tension and gravitational force. Gravitational force is the force of attraction the Earth does over an object. It is calculated as the product of mass and gravitational acceleration, which has magnitude g = 9.8 m/s².

Suppose positive referential is going up. To determine mass:

F_{r}=m.a

F_{t}-F_{g}=m.a

F_{t}-m.g=m.a

18.8-9.8m=5.22m

15.02m=18.8

m = 1.25

Block m has 1.25 kg.

(d) Gravitational force is also called weight. So, as described above: F_{g}=m.g.

The weight for the hanging block is

F_{g}=1.25*9.8

F_{g}= 12.25 N

Comparing tension and weight:

\frac{12.25}{18.8} ≈ 0.65

We can see that, weight of the hanging block is almost 0.65 times smaller than the tension on the rope.

4 0
3 years ago
14.A 90 kg quarterback gets tackled by being hit by a 120 kg lineman backwards
quester [9]

The acceleration of the quarterback and the lineman is 5.55m/s² and 4.16m/s² respectively in the same direction.

As, we know, the 120 Kg lineman is moving with a force of 500N.

His net acceleration will be in the same direction as his motion.

It is already known that, If M is the mass of the body and a is the acceleration of the body, then the force F on the body can be calculated by using the formula,

F = Ma.

The weight of the quarterback is 90 Kg. He is being hit by a force of 500N.

So, the acceleration can be calculated using the formula,

500N = 90kg x a

a = 5.55 m/s².

Now, the weight if the lineman is 120kg, the force applied by him is 500N.

So, from the formula, his acceleration A will be,

500N = 120Kg x A

A = 4.16 m/s².

both of them will have acceleration in the same direction,

To know more about Force, visit,

brainly.com/question/25239010

#SPJ9

8 0
1 year ago
a typical cmall flashlight contains two batteries each having na emf of 2.0 v connected in series with a bulb havin ga resistanc
Helen [10]

Answer:

P = 0.25 W

Explanation:

Given that,

The emf of the battry, E = 2 V

The resistance of a bulb, R = 16 ohms

We need to find the power delivered to the bulb. We know that, the formula for the power delivered is given by :

P=\dfrac{V^2}{R}\\\\P=\dfrac{2^2}{16}\\\\=0.25\ W

So, 0.25 W power is delivered to the bulb.

5 0
3 years ago
One principle of environmental law and policy in the U.S. is to make polluters pay . True or false ?
crimeas [40]
In a way it’s true because you can get a ticket for getting caught littering
5 0
3 years ago
Other questions:
  • Classify each possible hypothesis about a medicinal aloe vera plant as falsifiable or non-falsifiable.
    13·1 answer
  • A system loses 570 j of potential energy. in the process, it does 650 j of work on the environment and the thermal energy increa
    9·1 answer
  • Find the work done by the force field F(x, y) = xi + (y + 6)j in moving an object along an arch of the cycloid r(t) = (t − sin(t
    15·1 answer
  • Help.me on question 3 pls as fast as you can
    7·1 answer
  • A line graph shows the relationship between three variables.
    10·2 answers
  • Can two similar charges attracts each other ? ​
    12·2 answers
  • What is the transfer of energy by electromagnetic waves?
    5·1 answer
  • Punnett squares are convenient ways to represent the types and frequencies of gametes and progeny in experimental crosses. this
    5·1 answer
  • The photons of different light waves:
    9·1 answer
  • When caring for wounds, doctors need to make sure wounds are not infected by bacteria. Which electromagnetic wave would doctors
    14·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!