Answer:



Step-by-step explanation:
For this case we can calculate the sample variance and deviation with the following table
Class Midpoint (Xi) fi Xi*fi Xi^2 *fi
120.6-123.6 122.1 17 2075.7 253443
123.7-126.7 125.2 49 6134.8 768077
126.8-129.8 128.3 29 3720.7 477365.8
129.9-132.9 131.4 41 5387.4 707904.4
133.0-136.0 134.5 35 4007.5 633158.8
___________________________________________
Total 171 22026.1 2839948.85
For this case we can calculate the mean or expected value with the following formula:

Now we can calculate the sample variance with the following formula:
![s^2 =\frac{\sum f_i X^2_i -[\frac{(\sum X_i f_i)}{n}]^2}{n-1}](https://tex.z-dn.net/?f=s%5E2%20%3D%5Cfrac%7B%5Csum%20f_i%20X%5E2_i%20-%5B%5Cfrac%7B%28%5Csum%20X_i%20f_i%29%7D%7Bn%7D%5D%5E2%7D%7Bn-1%7D)
And if we replace we got:

And the standard deviation would be the square root of the variance and we got:
