Continuous compounding is the mathematical limit that compound interest can reach.
It is the limit of the function A(1 + 1/n) ^ n as n approaches infinity. IN theory interest is added to the initial amount A every infinitesimally small instant.
The limit of (1 + 1/n)^n is the number e ( = 2.718281828 to 9 dec places).
Say we invest $1000 at daily compounding at yearly interest of 2 %. After 1 year the $1000 will increase to:-
1000 ( 1 + 0.02/365)^365 = $1020.20
with continuous compounding this will be
1000 * e^1 = $2718.28
Rise over run
aka
change in y over change in x
No.
Since w = 8, you must replace the variable with the number associated to it.
So, it would be 5 + 8 = 58
5 + 8 is not equal to 58, it is equal to 13.
If you wanted to find out what w was, simply subtract 5 on both sides.
w = 58 - 5
3k+7k-2=6k+16
10k-2=6k+16
10k-6k=16+2
4k=18
k=18/4
k=9/2
Answer:
d is the answer ok :)
Step-by-step explanation: