Since the interior is 170 the exteriro must be 10 degrees. There is a total of 360 degrees so 360/10=36 or 36 sides.
The slope of the line connecting two points (<em>a</em>, <em>b</em>) and (<em>c</em>, <em>d</em>) is
(<em>d</em> - <em>b</em>) / (<em>c</em> - <em>a</em>)
i.e. the change in the <em>y</em>-coordinate divided by the change in the <em>x</em>-coordinate. For a function <em>y</em> = <em>f(x)</em>, this slope is the slope of the secant line connecting the two points (<em>a</em>, <em>f(a)</em> ) and (<em>c</em>, <em>f(c)</em> ), and has a value of
(<em>f(c)</em> - <em>f(a)</em> ) / (<em>c</em> - <em>a</em>)
Here, we have
<em>f(x)</em> = <em>x</em> ²
so that
<em>f</em> (1) = 1² = 1
<em>f</em> (1.01) = 1.01² = 1.0201
Then the slope of the secant line is
(1.0201 - 1) / (1.01 - 1) = 0.0201 / 0.01 = 2.01
Answer:
A
Step-by-step explanation:
Please ask if you have further questions
Answer:
5 or -5
Step-by-step explanation:
The absolute value, or the distance of a number from zero has to equate to 5. This means that -5 or 5 can be the answer since -5 is 5 spaces from zero and 5 is 5 spaces from zero on a number line.
We need to figure out how many more cans they need to bring. We figure this out by subtracting 403 from 1,000, which gives us 596 more cans. We now divide 596/28, to find how many each student would need to bring. This equals 21.3. You might want to mention that each student can't bring .3 of a can, so the answer could be 22 also.