The correct answer would be choice A.
An angle bisector is an angle that is exactly in the middle of an angle. It is right in between the two rays of the angle. If you fold a paper having the rays touch, the fold will be right in the middle. That will be your angle bisector.
Answer:
1 39/50 hours. This is equivalent to 1.78 hours.
Step-by-step explanation:
The sum of the hours of work and the hours for break gives the work day hour which has been given as 8 hours.
Furthermore, given that the break time is 22 1/4%, the number of hours for break
= 22 1/4% × 8 hours
= 89/400 × 8
= 1 39/50 hours
It looks like you're asked to find the value of y(-1) given its implicit derivative,

and with initial condition y(2) = -1.
The differential equation is separable:

Integrate both sides:


Solve for y :



![y = -\dfrac1{\sqrt[3]{3x+C}}](https://tex.z-dn.net/?f=y%20%3D%20-%5Cdfrac1%7B%5Csqrt%5B3%5D%7B3x%2BC%7D%7D)
Use the initial condition to solve for C :
![y(2) = -1 \implies -1 = -\dfrac1{\sqrt[3]{3\times2+C}} \implies C = -5](https://tex.z-dn.net/?f=y%282%29%20%3D%20-1%20%5Cimplies%20-1%20%3D%20-%5Cdfrac1%7B%5Csqrt%5B3%5D%7B3%5Ctimes2%2BC%7D%7D%20%5Cimplies%20C%20%3D%20-5)
Then the particular solution to the differential equation is
![y(x) = -\dfrac1{\sqrt[3]{3x-5}}](https://tex.z-dn.net/?f=y%28x%29%20%3D%20-%5Cdfrac1%7B%5Csqrt%5B3%5D%7B3x-5%7D%7D)
and so
![y(-1) = -\dfrac1{\sqrt[3]{3\times(-1)-5}} = \boxed{\dfrac12}](https://tex.z-dn.net/?f=y%28-1%29%20%3D%20-%5Cdfrac1%7B%5Csqrt%5B3%5D%7B3%5Ctimes%28-1%29-5%7D%7D%20%3D%20%5Cboxed%7B%5Cdfrac12%7D)
8 divided by 1/4 is the same as 8 multiplied by 4, which is 32