<span>If there has to be 2 men and 2 women, we know
that we must take a group of 2 men out of the group of 15 men and a group of 2
women out of the group of 20 women. Therefore, we have:
(15 choose 2) x (20 choose 2)
(15 choose 2) = 105
(20 choose 2) = 190
190*105 = 19950
Therefore, there are 19950 ways to have a group of 4 with 2 men and 2women.</span>
<span>If there has to be 1 man and 3 women, we know
that we must take a group of 1 man out of the group of 15 men and a group of 3
women out of the group of 20 women. Therefore, we have:
(15 choose 1) x (20 choose 3)
(15 choose 1) = 15
(20 choose 3) = 1140
15*1140 = 17100
Therefore, there are 17100 ways to have a group of 4 with 3 women and 1 man.</span>
<span>We now find the total outcomes of having a group
with 4 women.
We know this is the same as saying (20 choose 4) = 4845</span>
Therefore, there are 4845 ways to have a group of
4 with 4 women.
We now add the outcomes of 2 women, 3 women, and
4 women and get the total ways that a committee can have at least 2 women.
19950 + 17100 + 4845 = 41895 ways that there will
be at least 2 women in the committee
5-1/10
Step-by-step explanation:
4-1/2+3/5=
9/2 + 3/5=
45/10+6/10=51/10=5-1/10
Answer:
Step-by-step explanation:
There are only two games basketball and baseball.
Any student who plays could play basketball or baseball.
Given that there are
students in total.
Given that there are
students who don't play any game at all.
So,there are
students who play play some baseball or basketball.

The required probability is 
Answer:
C. -2
Step-by-step explanation:
Since the leading coefficient is 1 and rational roots are of the form ...
±(divisor of the constant)/(divisor of the leading coefficient)
all of the possible rational roots must be whole number diviors of 12. The only one on the list is -2.
Answer:
Thank to Goalscore24 correcting me, its actually Maria walking faster
Because 40 divided by 25 is 1.6
and 30 divided by 10 is 3
So Maria runs 3 miles in 1 second, and Luke runs 1.6 miles in 1 second
So Maria is faster.