Step-by-step explanation:
the first one is 2 that appears most while the second is 20 and 3
Answer:
The best way of writing this answer in an inequality pattern is 50 ≤ x ≥ 70
Step-by-step explanation:
The variable "x" is said to be greater than or equal to 50, that means that x could be 50, 51, 52, 53, 54......to infinity, all these values are true for x.
The second solution said x is greater or equal to 70. This also means that x could be 70, 71, 72, 73, ......... to infinity.
The inference that can be drawn from here is that x actually started from 50, so anything lesser than 50 is lesser than x, so 50 ≤ x. We can join the two answers together to get a range in a form like: 50 ≤ x ≥ 70
Answer:
P = 22
Step-by-step explanation:
P= l(2) + w(2)
5(2) + 6(2)
10 + `12
22
Simplify the following:
((x^2 - 11 x + 30) (x^2 + 6 x + 5))/((x^2 - 25) (x - 5 x - 6))
The factors of 5 that sum to 6 are 5 and 1. So, x^2 + 6 x + 5 = (x + 5) (x + 1):
((x + 5) (x + 1) (x^2 - 11 x + 30))/((x^2 - 25) (x - 5 x - 6))
The factors of 30 that sum to -11 are -5 and -6. So, x^2 - 11 x + 30 = (x - 5) (x - 6):
((x - 5) (x - 6) (x + 5) (x + 1))/((x^2 - 25) (x - 5 x - 6))
x - 5 x = -4 x:
((x - 5) (x - 6) (x + 5) (x + 1))/((x^2 - 25) (-4 x - 6))
Factor -2 out of -4 x - 6:
((x - 5) (x - 6) (x + 5) (x + 1))/(-2 (2 x + 3) (x^2 - 25))
x^2 - 25 = x^2 - 5^2:
((x - 5) (x - 6) (x + 5) (x + 1))/(-2 (x^2 - 5^2) (2 x + 3))
Factor the difference of two squares. x^2 - 5^2 = (x - 5) (x + 5):
((x - 5) (x - 6) (x + 5) (x + 1))/(-2(x - 5) (x + 5) (2 x + 3))
((x - 5) (x - 6) (x + 5) (x + 1))/((x - 5) (x + 5) (-2) (2 x + 3)) = ((x - 5) (x + 5))/((x - 5) (x + 5))×((x - 6) (x + 1))/(-2 (2 x + 3)) = ((x - 6) (x + 1))/(-2 (2 x + 3)):
((x - 6) (x + 1))/(-2 (2 x + 3))
Multiply numerator and denominator of ((x - 6) (x + 1))/(-2 (2 x + 3)) by -1:
Answer: (-(x - 6) (x + 1))/(2 (2 x + 3))
Planes<span> Q</span> and R are parallel. Lines a and b are shown on planes Q and R, respectively.
Which statement is true about lines a and b?
They are parallel lines.They are perpendicular lines.They are skew lines.<span>They will intersect.</span>