The equation that fits the standard form of a Quadratic equation is 2(x + 5)² + 8x + 5 + 6 = 0 which can be re-written as 2x² + 28x + 61 = 0.
<h3>What is a Quadratic Equation?</h3>
Quadratic equation is simply an algebraic expression of the second degree in x. Quadratic equation in its standard form is;
ax² + bx + c = 0
Where x is the unknown
From the given data, we check which of them fits the standard form of a quadratic equation.
- 2(x + 5)² + 8x + 5+ 6 = 0
2(x + 5)² + 8x + 5 + 6 = 0
2( (x(x+5) + 5(x+5) ) + 8x + 5 + 6 = 0
2( x² + 5x + 5x + 25 ) + 8x + 5 + 6 = 0
2( x² + 10x + 25 ) + 8x + 5 + 6 = 0
2x² + 20x + 50 + 8x + 5 + 6 = 0
2x² + 20x + 8x + 50 + 5 + 6 = 0
2x² + 28x + 61 = 0
Therefore, the equation that fits the standard form of a Quadratic equation is 2(x + 5)² + 8x + 5 + 6 = 0 which can be re-written as 2x² + 28x + 61 = 0.
Learn more about quadratic equations here: brainly.com/question/1863222
#SPJ4
The answer is 47/100 or it could also be 0.47
There are approximately 203 men.
A "regular quadrilateral" is a square, so the length and width are both 4 cm. The surface area of a rectangular prism is given by
S = 2(LW +H(L +W))
S = 2((4 cm)*(4 cm) +(6 cm)*(4 cm +4 cm))
S = 2(16 cm² +48 cm²)
S = 2*64 cm² = 128 cm²
The surface area of the prism is 128 cm².