Answer:
Length of AB = 6 cm
Length of the segment BC = 14 cm
Step-by-step explanation:
Here, B is a point on a segment AC.
AB : BC = 3:7
Length of the segment AC = 20 cm
Now, let the common ratio between the segment is x.
So, the length of AB = 3 x , and Length of BC = 7 x
Now, AB + BC = AC
⇒ 3x + 7x = 20
or, 10 x = 20
or, x = 2
Hence, the length of AB = 3 x = 3 x 2 = 6 cm
and the length of the segment BC = 7x = 7 x 2 = 14 cm
Answer:
Step-by-step explanation:
Given that alpha and beta be conjugate complex numbers
such that frac{\alpha}{\beta^2} is a real number and alpha - \beta| = 2 \sqrt{3}.
Let
since they are conjugates
Imaginary part of the above =0
i.e.
So the value of alpha =
u = 10.4 and v = 12
Solution:
In the given 2 sides of a triangle are 60°, 60°.
Sum of all the angles of a triangle = 180°
60° + 60° + third angle = 180°
⇒ third angle = 180° – 60° – 60°
⇒ third angle = 60°
All angles are equal, therefore the given triangle is an equilateral triangle.
⇒ All sides are equal in length.
⇒ v = 12
The line drawn from the top angle divides the triangle into two equal parts
and the line is perpendicular.
12 ÷ 2 = 6
Using Pythagoras theorem,
⇒
⇒
⇒
⇒
⇒ u = 10.4
Hence, u = 10.4 and v = 12.
Answer:
"f(x) = 4(1.02)7x; spreads at a rate of approximately 2% daily"
Step-by-step explanation:
<u>Complete Question:</u>
A virus that initially infected four people is spreading at a rate of 15% each week. The following function represents the weekly spread of the virus: f(x) = 4(1.15)x. Rewrite the function to show how quickly the virus spreads each day and calculate this rate as a percentage.
f(x) = 4(1.15)7x; spreads at a rate of approximately 1.5% daily
f(x) = 4(1.02)7x; spreads at a rate of approximately 2% daily
f(x) = 4(1.157)x; spreads at a rate of approximately 2.66% daily
f(x) = 4(1.02)x; spreads at a rate of approximately 0.2% daily
<u>Solution:</u>
The weekly number of people infected would be:
7 days in a week, so daily number of people infected would be:
To find daily rate, we set these 2 equations equal and solve for r:
That is 0.02*100 = 2% daily
2nd answer choice is right.