Answer:
Babies and small children
Explanation:
I hope this helped!
If it displays the dominant genotype, we can assume that this plant would have a heterozygous (hybrid) genotype, i.e.
With a purebred recessive plant, the geneotypes would be 50% Bb and 50% bb.
With a purebred dominant plant, the genetpyes would be 50% BB and 50% Bb.
With a <span>heterozygous (hybrid) plant, the genotypes would be 25% BB, 50% Bb and 25% bb.</span>
Answer:
According to the hormone diagram of the menstrual cycle, the woman is not pregnant due to the behavior of progesterone and estrogens, whose levels do not increase, in addition to the absence of human chorionic gonadotropin.
Explanation:
The graph shows the behavior of hormones during a woman's menstrual cycle in the absence of pregnancy.
During a woman's normal cycle, estrogen, luteinizing hormone (LH) and follicle stimulating hormone (FSH) tend to increase prior to ovulation, reach their peak values at ovulation, and then decline, as shown in the graph. Progesterone, on the other hand, increases after ovulation and decreases if the woman does not become pregnant.
In the case of a pregnant woman:
- <u>Estrogens</u> continue to increase after ovulation, produced by the ovaries and placenta.
- <u>Progesterone</u> also increases its levels, as it is a hormone produced by the ovaries and placenta.
- <u>Hormone human chorionic gonadotropin</u> (HCG) appears and increases during pregnancy, due to the secretory activity of the placenta.
<em><u>The diagram represents the normal cycle of a woman who is not pregnant</u></em>.
Answer:
8.800s
Explanation:
When the performer swings, she oscillates in SHM about Lo of the string with time period To = 8.90s.
First, determine the original length Lo, where for a SHM the time period is related to length and the gravitational acceleration by the equation
T = 2π×√(Lo/g)..... (1)
Let's make Lo the subject of the formulae
Lo = gTo^2/4π^2 ..... (2)
Let's put our values into equation (2) to get Lo
Lo = gTo^2/4π^2
= (9.8m/s^2)(8.90s)^2
------------------------------
4π^2
= 19.663m
Second instant, when she rise by 44.0cm, so the length Lo will be reduced by 44.0cm and the final length will be
L = Lo - (0.44m)
= 19.663m - 0.44m
= 19.223m
Now let use the value of L into equation (1) to get the period T after raising
T = 2π×√(L/g)
= 2π×√(19.223m/9.8m/s^2)
= 8.800s