This question is not correctly written.
Complete Question
Select all equations that can represent the question: "How many groups of 4/5 are in 1?" A ?⋅1=4/5? Times 1 is equal to 4 fifths B 1⋅4/5=?1 times 4 fifths is equal to ? C 4/5÷1=?4 fifths divided by 1 is equal to ? D ?⋅4/5=1? Times 4 fifths is equal to 1 E 1÷4/5=?1 divided by 4 fifths is equal to ?
Answer:
D ?⋅4/5=1 = ? Times 4 fifths is equal to
E 1÷4/5=? = 1 divided by 4 fifths is equal to
Step-by-step explanation:
How many groups of 4/5 are in 1?
The operation used to solve this is that Division operation.
Hence, we solve it by saying:
1 ÷ 4/5 = ?
= 1× 5/4 = ?
5/4 = ?
Cross Multiply
5 = 4 × ?
? = 5/4
The equations that can represent the question: is
Option D ?⋅4/5=1 = ? Times 4 fifths is equal to
Option E 1÷4/5=? = 1 divided by 4 fifths is equal to
<span>We want to check how many intersections line A and B have, that is, we want to check how many common solutions do these equations have:
</span>
i) 2x + 2y = 8
ii) x + y = 4
<span>
use equation ii) to write y in terms of x as : y=4-x,
substitute y =4-x in equation i):
</span>2x + 2y = 8
2x + 2(4-x) = 8
<span>2x+8-2x=8
8=8
this is always true, which means the equations have infinitely many common solutions.
Answer: </span><span>There are infinitely many solutions.</span><span>
</span>
Answer:
3x>12 2x/3 ≤ 6
3x>12, x = 4 2x/3, x = 2 ≤ 6
Answer:The Answer is -23
Step-by-step explanation:
Answer:
The more time spent reading
Step-by-step explanation:
The 2 that had 4 hours of read time had an A