Given:
In triangle KLM, KL = 123 cm and measure of angle K is 35 degrees.
To find:
The length of the side KM to the nearest tenth of a centimeter.
Solution:
In a right angle triangle,

In the given right triangle KLM,



Multiply both sides by 123.



The measure of side KM is 100.8 cm.
Therefore, the correct option is (2).
Here you go! Hope this helps!
<span>reducible.
hope this helps</span>
Just quit school bro it’s not worth it
Answer:
Dimensions of printed area
w = 8.95 cm
h = 13.44 cm
A(max) = 120.28 cm²
Step-by-step explanation:
Lets call " x " and "y" dimensions of the poster area ( wide and height respectively) . Then
A(t) = 180 cm² = x*y y = 180/ x
And the dimensions of printed area is
A(p) = ( x - 2 ) * ( y - 3 ) then as y = 180/x we make A function of x only so
A(x) = ( x - 2 ) * ( 180/x - 3 ) ⇒ A(x) = 180 - 3x - 360/x +6
A(x) = - 3x - 360 /x + 186
Taking derivatives on both sides of the equation we get:
A´(x) = -3 + 360/ x²
A´(x) = 0 -3 + 360/ x² = 0 -3x² + 360 = 0
x² = 120 ⇒ x = √120 x = 10.95 cm
And y = 180 / 10.95 ⇒ y = 16.44 cm
Then x and y are the dimensions of the poster then according to problem statement
w of printed area is x - 2 = 10.95 - 2 = 8.95 cm
and h of printed area is y - 3 = 16.44 - 3 = 13.44 cm
And the largest printed area is w * h = ( 8.95)*(13.44)
A(max) = 120.28 cm²