Continuous vs discrete is if you can count vs. measure the results. For example: you can run 13. 5 miles but you can't have 13.5 dogs. Miles (measurable) are continuous while dogs (countable) are discrete.
Qualitative results are when a result is not a number, and qualitative is when the result is a number. For example: if you're doing a lab and a result is either going to be "blue" or "green", that's qualitative, since those aren't number values. However, if you were measuring distance, that would be qualitative, since you would get a result of "6 meters" or "2.5 inches", which are numerical values.
The scale of measurement are the units in which you are measuring something it. For example: distance has units of inches, feet, miles, etc... and weight has units of grams, kilograms, tons, etc...
Hope this helps! -Alex :)
Answer:
Each one of the sides is equal to 7d-5
Step-by-step explanation:
A regular pentagon has 5 sides of equal length.
The perimeter of a regular pentagon is given by
P = 5s where s is the side length
35d -25 = 5s
Divide each side by 5
(35d-25)/5 = 5s/5
7d-5 =s
Each one of the sides is equal to 7d-5
Answer:
Please check the explanation
Step-by-step explanation:
Given the function

Given that the output = -3
i.e. y = -3
now substituting the value y=-3 and solve for x to determine the input 'x'


switch sides

Add 1 to both sides


![\mathrm{For\:}g^3\left(x\right)=f\left(a\right)\mathrm{\:the\:solutions\:are\:}g\left(x\right)=\sqrt[3]{f\left(a\right)},\:\sqrt[3]{f\left(a\right)}\frac{-1-\sqrt{3}i}{2},\:\sqrt[3]{f\left(a\right)}\frac{-1+\sqrt{3}i}{2}](https://tex.z-dn.net/?f=%5Cmathrm%7BFor%5C%3A%7Dg%5E3%5Cleft%28x%5Cright%29%3Df%5Cleft%28a%5Cright%29%5Cmathrm%7B%5C%3Athe%5C%3Asolutions%5C%3Aare%5C%3A%7Dg%5Cleft%28x%5Cright%29%3D%5Csqrt%5B3%5D%7Bf%5Cleft%28a%5Cright%29%7D%2C%5C%3A%5Csqrt%5B3%5D%7Bf%5Cleft%28a%5Cright%29%7D%5Cfrac%7B-1-%5Csqrt%7B3%7Di%7D%7B2%7D%2C%5C%3A%5Csqrt%5B3%5D%7Bf%5Cleft%28a%5Cright%29%7D%5Cfrac%7B-1%2B%5Csqrt%7B3%7Di%7D%7B2%7D)
Thus, the input values are:
![x=-\sqrt[3]{2}+5,\:x=\frac{\sqrt[3]{2}\left(1+5\cdot \:2^{\frac{2}{3}}\right)}{2}-i\frac{\sqrt[3]{2}\sqrt{3}}{2},\:x=\frac{\sqrt[3]{2}\left(1+5\cdot \:2^{\frac{2}{3}}\right)}{2}+i\frac{\sqrt[3]{2}\sqrt{3}}{2}](https://tex.z-dn.net/?f=x%3D-%5Csqrt%5B3%5D%7B2%7D%2B5%2C%5C%3Ax%3D%5Cfrac%7B%5Csqrt%5B3%5D%7B2%7D%5Cleft%281%2B5%5Ccdot%20%5C%3A2%5E%7B%5Cfrac%7B2%7D%7B3%7D%7D%5Cright%29%7D%7B2%7D-i%5Cfrac%7B%5Csqrt%5B3%5D%7B2%7D%5Csqrt%7B3%7D%7D%7B2%7D%2C%5C%3Ax%3D%5Cfrac%7B%5Csqrt%5B3%5D%7B2%7D%5Cleft%281%2B5%5Ccdot%20%5C%3A2%5E%7B%5Cfrac%7B2%7D%7B3%7D%7D%5Cright%29%7D%7B2%7D%2Bi%5Cfrac%7B%5Csqrt%5B3%5D%7B2%7D%5Csqrt%7B3%7D%7D%7B2%7D)
And the real input is:
![x=-\sqrt[3]{2}+5](https://tex.z-dn.net/?f=x%3D-%5Csqrt%5B3%5D%7B2%7D%2B5)
Answer:
1.10
Step-by-step explanation: