Answer:
a) 0.3571 = 35.71% probability that the stock price will be more than $25.
b) 0.1429 = 14.29% probability that the stock price will be less than or equal to $18.
Step-by-step explanation:
Uniform probability distribution:
An uniform distribution has two bounds, a and b.
The probability of finding a value of at lower than x is:

The probability of finding a value between c and d is:

The probability of finding a value above x is:

Uniformly distributed between $16 and $30 per share.
This means that 
a) More than $25?

0.3571 = 35.71% probability that the stock price will be more than $25.
b) Less than or equal to $18?

0.1429 = 14.29% probability that the stock price will be less than or equal to $18.
Answer:
The probability that a randomly selected depth is between 2.25 m and 5.00 m is 0.55.
Step-by-step explanation:
Let the random variable <em>X</em> denote the water depths.
As the variable water depths is continuous variable, the random variable <em>X</em> follows a continuous Uniform distribution with parameters <em>a</em> = 2.00 m and <em>b</em> = 7.00 m.
The probability density function of <em>X</em> is:

Compute the probability that a randomly selected depth is between 2.25 m and 5.00 m as follows:

![=\frac{1}{5.00}\int\limits^{5.00}_{2.25} {1} \, dx\\\\=0.20\times [x]^{5.00}_{2.25} \\\\=0.20\times (5.00-2.25)\\\\=0.55](https://tex.z-dn.net/?f=%3D%5Cfrac%7B1%7D%7B5.00%7D%5Cint%5Climits%5E%7B5.00%7D_%7B2.25%7D%20%7B1%7D%20%5C%2C%20dx%5C%5C%5C%5C%3D0.20%5Ctimes%20%5Bx%5D%5E%7B5.00%7D_%7B2.25%7D%20%5C%5C%5C%5C%3D0.20%5Ctimes%20%285.00-2.25%29%5C%5C%5C%5C%3D0.55)
Thus, the probability that a randomly selected depth is between 2.25 m and 5.00 m is 0.55.
$98.30=5.1a+11.6
98.30-11.6=5a+11.6-11.6
86.7=5a
86.7/5=5a/5
17.34=a
So only 17 people can attend
Answer:
75
Step-by-step explanation:
Four scores.... add them together and divide by four
(90 + 80 + 70 + 60) / 4 = 75