Answer:
COV (all stocks) = 0.55
COV (stocks and bonds) = 0.82
Step-by-step explanation:
Coefficient of Variation is used to measure variability.
It is defined as the ration of standard deviation and the mean.
It can be used to compare variability of two population or two samples.
Formula:
![\text{Coefficient of Variation} = \displaystyle\frac{\text{Standard Deviation}}{\text{Mean}}](https://tex.z-dn.net/?f=%5Ctext%7BCoefficient%20of%20Variation%7D%20%3D%20%5Cdisplaystyle%5Cfrac%7B%5Ctext%7BStandard%20Deviation%7D%7D%7B%5Ctext%7BMean%7D%7D)
where
are data points,
is the mean and n is the number of observations.
![Mean = \displaystyle\frac{\text{Sum of all observations}}{\text{Total number of observation}}](https://tex.z-dn.net/?f=Mean%20%3D%20%5Cdisplaystyle%5Cfrac%7B%5Ctext%7BSum%20of%20all%20observations%7D%7D%7B%5Ctext%7BTotal%20number%20of%20observation%7D%7D)
x: 14, 0, 39, 25, 32, 27, 28, 14, 14, 15
![Mean = \frac{208}{10} = 20.8](https://tex.z-dn.net/?f=Mean%20%3D%20%5Cfrac%7B208%7D%7B10%7D%20%3D%2020.8)
![Standard~Deviation = \sqrt{\frac{1169.6}{9} } = 11.39](https://tex.z-dn.net/?f=Standard~Deviation%20%3D%20%5Csqrt%7B%5Cfrac%7B1169.6%7D%7B9%7D%20%7D%20%3D%2011.39)
![Coefficient~of~Variation = \frac{11.39}{20.8} = 0.55](https://tex.z-dn.net/?f=Coefficient~of~Variation%20%3D%20%5Cfrac%7B11.39%7D%7B20.8%7D%20%3D%200.55)
y = 6, 2, 29, 17, 26, 17, 17, 2, 3, 5
![Mean = \frac{124}{10} = 12.4](https://tex.z-dn.net/?f=Mean%20%3D%20%5Cfrac%7B124%7D%7B10%7D%20%3D%2012.4)
![Standard~Deviation = \sqrt{\frac{924.4}{9} } = 10.13](https://tex.z-dn.net/?f=Standard~Deviation%20%3D%20%5Csqrt%7B%5Cfrac%7B924.4%7D%7B9%7D%20%7D%20%3D%2010.13)
![Coefficient~of~Variation = \frac{10.13}{12.4} = 0.82%](https://tex.z-dn.net/?f=Coefficient~of~Variation%20%3D%20%5Cfrac%7B10.13%7D%7B12.4%7D%20%3D%200.82%25)
Since coefficient of variation of x is less compared to y, thus it could be said bonds does not reduce overall risk of an investment portfolio.