4 for the first one and 1.5 for the second one
Do you need it in fraction or decimal?
Gonna fix some typos with your question:
Carl wants to plant a garden that is 1 1/2 yards long with an area of 3 1/2 square yards. What is the width of the garden?
So with these type of questions, we divide 3 1/2 by 1 1/2, to find the missing length:
3 1/2 ÷ 1 1/2 = 2 1/3.
The width of Carl's garden is 2 1/3 square yards.
Answer:
2.86$
Step-by-step explanation:
first you must find out how much she is spending since she is buying 2.8 pounds of asparagus that are 2.55 per pound you can just times 2.8 x 2.55 its the same as if it were a dollar for a pound it would be 1 x 1 except in the case of this question it is a decimal number. Now that you know how much she spent you would subtract it from 10 since that's the amount she gave the cashier so you subtract the cost from how much she gave and you will get how much change she will get.
Answer:
Present Value = ![X [\frac{1}{(1 + 0.12)^{1} } + \frac{1}{(1 + 0.12)^{2} } + \frac{1}{(1 + 0.12)^{3} } + \frac{1}{(1 + 0.12)^{4} } + \frac{1}{(1 + 0.12)^{5} } ]](https://tex.z-dn.net/?f=X%20%5B%5Cfrac%7B1%7D%7B%281%20%2B%200.12%29%5E%7B1%7D%20%7D%20%20%2B%20%5Cfrac%7B1%7D%7B%281%20%2B%200.12%29%5E%7B2%7D%20%7D%20%20%2B%20%5Cfrac%7B1%7D%7B%281%20%2B%200.12%29%5E%7B3%7D%20%7D%20%20%2B%20%5Cfrac%7B1%7D%7B%281%20%2B%200.12%29%5E%7B4%7D%20%7D%20%20%2B%20%5Cfrac%7B1%7D%7B%281%20%2B%200.12%29%5E%7B5%7D%20%7D%20%5D)
Step-by-step explanation:
To find - If discount rate is 12%, the present value of Rs X received at the end of each year for the next five years is equal to .... ?
Solution -
We know that, formula for finding the Present vale is given by
Present value = Future value / (1 + r)ⁿ
where r is the rate of interest
and n is Number of periods
Now,
Here in the question, we have
r = 12% = 12/100 = 0.12
n = 5
Also, Given that, we have received Rs X at the end of each year
So,
Present Value = 
= ![X [\frac{1}{(1 + 0.12)^{1} } + \frac{1}{(1 + 0.12)^{2} } + \frac{1}{(1 + 0.12)^{3} } + \frac{1}{(1 + 0.12)^{4} } + \frac{1}{(1 + 0.12)^{5} } ]](https://tex.z-dn.net/?f=X%20%5B%5Cfrac%7B1%7D%7B%281%20%2B%200.12%29%5E%7B1%7D%20%7D%20%20%2B%20%5Cfrac%7B1%7D%7B%281%20%2B%200.12%29%5E%7B2%7D%20%7D%20%20%2B%20%5Cfrac%7B1%7D%7B%281%20%2B%200.12%29%5E%7B3%7D%20%7D%20%20%2B%20%5Cfrac%7B1%7D%7B%281%20%2B%200.12%29%5E%7B4%7D%20%7D%20%20%2B%20%5Cfrac%7B1%7D%7B%281%20%2B%200.12%29%5E%7B5%7D%20%7D%20%5D)
⇒Present Value = ![X [\frac{1}{(1 + 0.12)^{1} } + \frac{1}{(1 + 0.12)^{2} } + \frac{1}{(1 + 0.12)^{3} } + \frac{1}{(1 + 0.12)^{4} } + \frac{1}{(1 + 0.12)^{5} } ]](https://tex.z-dn.net/?f=X%20%5B%5Cfrac%7B1%7D%7B%281%20%2B%200.12%29%5E%7B1%7D%20%7D%20%20%2B%20%5Cfrac%7B1%7D%7B%281%20%2B%200.12%29%5E%7B2%7D%20%7D%20%20%2B%20%5Cfrac%7B1%7D%7B%281%20%2B%200.12%29%5E%7B3%7D%20%7D%20%20%2B%20%5Cfrac%7B1%7D%7B%281%20%2B%200.12%29%5E%7B4%7D%20%7D%20%20%2B%20%5Cfrac%7B1%7D%7B%281%20%2B%200.12%29%5E%7B5%7D%20%7D%20%5D)