-----------------------------------------------
Information Given:
-----------------------------------------------
ON = 7x - 9
LM = 6x + 4
MN = x - 7
OL = 2y - 7
-----------------------------------------------
Since it is a parallelogram:
-----------------------------------------------
ON = LM and
MN = OL
-----------------------------------------------
ON = LM:
-----------------------------------------------
7x - 9 = 6x + 4
-----------------------------------------------
Subtract 6x from both sides:
-----------------------------------------------
x - 9 = 4
-----------------------------------------------
Add 9 to both sides:
-----------------------------------------------
x = 13
-----------------------------------------------
MN = OL:
-----------------------------------------------
x - 7 = 2y - 7
-----------------------------------------------
Sub x = 13:
-----------------------------------------------
13 - 7 = 2y - 7
-----------------------------------------------
Simplify:
-----------------------------------------------
6 = 2y - 7
-----------------------------------------------
Add 7 on both sides:
-----------------------------------------------
13 = 2y
-----------------------------------------------
Divide by 2:
-----------------------------------------------
y = 13/2
-----------------------------------------------
Answer: x = 13, y = 13/2 (Answer D)
-----------------------------------------------
28 x 12 = 336
336 - 16 = 320
320 divided by 4 = 80
80
Lights
Answer:
its 3
Step-by-step explanation:
A + b = 15 ..... eq 1
a – b = 12 ...... eq 2
So a = 15 – b
Substitute in eq 2 :
15 – b – b = 12
15 – 2b = 12
–2b = 12 – 15
b = 1.5
So a = 15 – 3/2 = 13.5
4ab = 4 x 13.5 x 1.5 = 81
Answer:
The length of the line segment is of 5.9 units.
Step-by-step explanation:
Distance between two points:
Suppose that we have two points,
and
. The distance between these two points is given by:

How long is the line segment?
The distance between points P and Q. So
P(1,3), and Q(4,8).

The length of the line segment is of 5.9 units.