Answer:
y=-1/4x-6
Step-by-step explanation:
y intercept is -6 and slope is -1/4
point slope is y-y1=m(x-x1)
you can use and point. i am using (0,-6)
y--6=-1/4(x-0)
y+6=-1/4x
-6 -6
y=-1/4x-6
Answer:
(-8, 8) and (2, 2)
Step-by-step explanation:
<h2>Answer:
The line from the question [ y = -8x + 3 ] passes through the point ( -1, 11 ). </h2>
<h3 /><h3>Step-by-step explanation:
</h3>
<u>Find the slope of the parallel line</u>
When two lines are parallel, they have the same slope.
⇒ if the slope of this line = - 8
then the slope of the parallel line (m) = - 8
<u>Determine the equation</u>
We can now use the point-slope form (y - y₁) = m(x - x₁)) to write the equation for this line:
⇒ y - 11 = - 8 (x - (-1))
∴ y - 11 = - 8 (x + 1)
We can also write the equation in the slope-intercept form by making y the subject of the equation and expanding the bracket to simplify:
since y - 11 = - 8 (x + 1)
y = - 8 x + 3
The line from the question [ y = -8x + 3 ] passes through the point ( -1, 11 ).
Answer:
97.98
Step-by-step explanation:
The area of the parallelogram PQR is the magnitude of the cross product of any two adjacent sides. Using PQ and PS as the adjacent sides;
Area of the parallelogram = |PQ×PS|
PQ = Q-P and PS = S-P
Given P(0,0,0), Q(4,-5,3), R(4,-7,1), S(8,-12,4)
PQ = (4,-5,3) - (0,0,0)
PQ = (4,-5,3)
Also, PS = S-P
PS = (8,-12,4)-(0,0,0)
PS = (8,-12,4)
Taking the cross product of both vectors i.e PQ×PS
(4,5,-3)×(8,-12,4)
PQ×PS = (20-36)i - (16-(-24))j + (-48-40)k
PQ×PS = -16i - 40j -88k
|PQ×PS| = √(-16)²+(-40)²+(-88)²
|PQ×PS| = √256+1600+7744
|PQ×PS| = √9600
|PQ×PS| ≈ 97.98
Hence the area of the parallelogram is 97.98