1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Dominik [7]
3 years ago
14

17. The length of a rectangle is 3 inches greater than its width. The perimeter is 28 inches.

Mathematics
1 answer:
Anna11 [10]3 years ago
4 0

Answer:

\boxed{ \bold{ \sf{ width \: of \: a \: rectangle = 5.5 \: inches}}}

\boxed{ \bold{ \sf{length \: of \: a \: rectangle =8.5 \ \: \:  inches}}}

Step-by-step explanation:

Let the width of a rectangle be 'w'

Length of a rectangle = w + 3

Perimeter of a rectangle = 28 inches

To find : dimensions of the rectangle ( length and width )

<u>Finding </u><u>the</u><u> </u><u>width</u><u> </u><u>of</u><u> </u><u>a</u><u> </u><u>rectangle</u><u> </u><u>(</u><u> </u><u>w</u><u> </u><u>)</u><u> </u>

\boxed{ \sf{perimeter \: of \: a \: rectangle = 2(l + w)}}

\dashrightarrow{ \sf{28 = 2(w + 3 + w)}}

\dashrightarrow{ \sf{28 = 2(2w + 3)}}

\dashrightarrow{ \sf{28 = 4w + 6}}

\dashrightarrow{ \sf{4w + 6 = 28}}

\dashrightarrow{ \sf{4w = 28 - 6}}

\dashrightarrow{ \sf{4w = 22}}

\dashrightarrow{ \sf{ \frac{4w}{4}  =  \frac{22}{4} }}

\dashrightarrow{ \sf{w = 5.5 \: inches}}

Width of a rectangle = 5.5 inches

<u>Now</u><u>,</u><u> </u><u>replacing</u><u> </u><u>/</u><u> </u><u>substit</u><u>uting</u><u> </u><u>the</u><u> </u><u>value</u><u> </u><u>of</u><u> </u><u>w</u><u> </u><u>in</u><u> </u><u>order</u><u> </u><u>to</u><u> </u><u>find</u><u> </u><u>the </u><u>length</u><u> </u><u>of</u><u> </u><u>a</u><u> </u><u>rectangle</u><u> </u>

\sf{ length = 3 + w}

\dashrightarrow{ \sf{length = 3 + 5.5}}

\dashrightarrow{ \sf{length = 8.5  \: \: inches}}

Length of a rectangle = 8.5 inches

Hope I helped!

Best regards! :D

You might be interested in
How do you write the equation of a line if you know two points that are on the line?
vampirchik [111]

y= mx +b,  where m is considered the slope. Hope this helps.

6 0
3 years ago
Read 2 more answers
4 over 7 of students at a school are boys. If there are 2184 students at the school, how many are girls?
lisov135 [29]
2180 or 2177 i think that is the answer
6 0
3 years ago
Read 2 more answers
I need help? Can anyone help me ?
Rina8888 [55]
Given a coordinate point (x, y), the first value of the point represents the value on the x-axis while the second value represent the value on the y-axis.

1.) To express the values (-4, -1), (-1, 2), (1, -4), (2, -3), (4, 3) as a table, we have:

 x          y
-4         -1
-1          2
 1         -4
 2         -3
 4          3

The values (-4, -1), (-1, 2), (1, -4), (2, -3), (4, 3) expressed as a graph have been attached as graph_1


To express the values (-4, -1), (-1, 2), (1, -4), (2, -3), (4, 3) as a mapping, we have two circles with one labelled x and the other one labelled y.
Inside the circle labelled x are the numbers -4, -1, 1, 2, 4 written vertically and inside the circle labelled y are the numbers -4, -3, -1, 2, 3 written vertically.
There are lines joining from the circle labelled x to the circle labelled y with line joining -4 in circle x to -1 in circle y, -1 in circle x to 2 in circle y, 1 in circle x to -4 in circle y, 2 in circle x to -3 in circle y, 4 in circle x to  3 in circle y.

The domain of the relation is the set of the x-values of the relation, i.e. domain is {-4, -1, 1, 2, 4}.
The range of the relation is the set of the y-values of the relation, i.e. range is {-4, -3, -1, 2, 3}

2.) To express the values (-2, 1), (-1, 0), (1, 2), (2, -4), (4, 3) as a table, we have:

 x          y
-2         1
-1         0
 1          2
 2         -4
 4          3

The values (-2, 1), (-1, 0), (1, 2), (2, -4), (4, 3) expressed as a graph have been attached as graph_2


To express the values (-2, 1), (-1, 0), (1, 2), (2, -4), (4, 3) as a mapping, we have two circles with one labelled x and the other one labelled y.
Inside the circle labelled x are the numbers -2, -1, 1, 2, 4 written vertically and inside the circle labelled y are the numbers -4, 0, 1, 2, 3 written vertically.
There are lines joining from the circle labelled x to the circle labelled y with a line joining -2 in circle x to 1 in circle y, -1 in circle x to 0 in circle y, 1 in circle x to 2 in circle y, 2 in circle x to -4 in circle y, 4 in circle x to  3 in circle y.

The domain of the relation is the set of the x-values of the relation, i.e. domain is {-2, -1, 1, 2, 4}.
The range of the relation is the set of the y-values of the relation, i.e. range is {-4, 0, 1, 2, 3}
7 0
3 years ago
Find the 6th term . <br>16,48,144​
olga55 [171]

Step-by-step explanation:

a=16

r=3

48/16=3

144/16=3

6th term

=ar^(n-1)

= 16(3)^(6-1)

=3888

5 0
3 years ago
Enter the missing numbers in the boxes to complete the table of equivalent ratios of time to distance.
andre [41]
Answer:  Here is the complete table, with the filled in values:
______________________________________________________________
Time (h)    Distance (mi)
    3                2 
    9                6
   12                8
   18               12
___________________________________________________

Explanation:
___________________________________________________
Let us begin by obtaining the "?" value; that is, the "distance" (in "mi.") ;
         when the time (in "h") is "18" ; 
___________________________________________________

12/8 = 18/?  

Note: "12/8 = (12÷4) / (8÷4) = 3/2 ;

Rewrite:  3/2 = 18/? ;  cross-multiply:  3*? = 2 * 18 ; 
                                                                        3*? = 36 ;

                                                                      Divide each side by "3" ;
                                                                            The "?" = 36/3 = 12 ;

So, 12/8 = 18/12 ;

The value: "12" takes the place for the "?" in the table for "distance (in "mi.);
                              when the "time" (in "h") is "18".
__________________________________________________________
Now, let us obtain the "? " value for the "distance" (in "mi.");
                when the "time" (in "h") is:  "9" .

12/8 = 9/? ;  Solve for "?" ;

We know (see aforementioned) that "12/8 = 3/2" ; 

So, we can rewrite:  3/2 = 9/? ;  Solve for "?" ; 

Cross-multiply:  3* ? = 2* 9 ;    3* ? = 18 ;  
                                                           Divide each side by "3" ;
                                                    to  get:  "6" for the "?" value.

When the time (in "h") is "9", the distance (in "mi.") is "6" .
____________________________________________________
Now, to solve the final "?" value in the table given.

9/6 = ?/2 ;  Note:  We get the "6" from our "calculated value" (see above problem). 

9/6 = (9÷3) / (6÷3) = 3/2 ;  

So, we know that the "?" value is:  "3" .

Alternately:   9/6 = ?/2 ; 

Cross-multiply:  6*? = 2*9 ;   6 * ? = 18 ;  Divide each side by "6" ;
                                                               to find the value for the "?" ; 
                                                                    "?" = 18/6 = "3" .

When the "distance" (in "mi.") is:  "2" ;  the time (in "h") is:  "3" .
____________________________________________________
Here is the complete table—with all the values filled in:
____________________________________________________

<span>Time (h)    Distance (mi)
____________________________________________________
    3                2 
    9                6
   12                8
   18               12
____________________________________________________
</span>
6 0
3 years ago
Other questions:
  • How do you solve this problem
    14·1 answer
  • Five less than 6 times a number is equivalent to 1 less than twice that number?
    11·2 answers
  • Add<br><br> Show your work<br><br> -1.2 + (-1.7)
    8·2 answers
  • PLZZZ HELP!!!! (WILL GIVE BRAINLIEST!!!!!!!)
    8·2 answers
  • The function f(x) = 800(1.09)4x shows the growth due to interest that Jim earns on an investment. The steps to calculate an equi
    7·2 answers
  • Let segments a p and b p be tangent segments. what is the length of segment a p if b p equals 12 cm?
    13·1 answer
  • When Marcus visited the corner store the first day he bought 3 sodas and 5 bag of chips for a total of $4.05. On the second day
    6·2 answers
  • Write a question that represents the following equation.<br><br><br><br><br> 5- n = 35
    7·2 answers
  • Are these lines Parallel? <br><br>Super easy, just one pair of lines.​
    10·2 answers
  • 12 = x • 3<br><br> How to solve?
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!