1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Maslowich
4 years ago
7

Given f(x) = x - 7 and g(x) = x2. Find g(f(-1)) 9(-1)) = 1

Mathematics
1 answer:
Alik [6]4 years ago
8 0

Answer:

64

Step-by-step explanation:

f(-1)=-1-7=-8

g(f(-1))=(-8)^2=(-8)(-8)=64

You might be interested in
How do I explain 1.82 divided by 140.14
denpristay [2]

Answer:

  0.012987...(6-digit repeat)

Step-by-step explanation:

You explain it the same way you explain any division of decimal numbers.

The usual procedure is to adjust both numbers so that the divisor is an integer. Here, that is accomplished by multiplying each number by 100. This makes the problem ...

  1.82/140.14 = 182/14014

Now, division proceeds in the usual way. The first non-zero quotient digit will appear in the hundredths place. The quotient is a repeating decimal with a 6-digit repeat. You recognize the repeat as soon as you see 182 as a remainder.

__

<em>Additional comment</em>

The ratio reduces to ...

  \dfrac{1.82}{140.14}=\dfrac{182}{14014}=\dfrac{1}{77}=0.\overline{012987}

4 0
3 years ago
A square piece of confetti has a perimeter of 28 millimeters. How long is each side of the piece of confetti?
ch4aika [34]
7 is the answer for each side


5 0
4 years ago
Read 2 more answers
Find the perimeter of a rectangle whose dimensions are 15 inch times 8 inches
strojnjashka [21]
The perimeter of the rectangle is 120
5 0
3 years ago
Read 2 more answers
Need help with this question asap!!
Juli2301 [7.4K]

So I took the test and my teacher said to label all of the degrees so

angle 1,3,5,7,9,11,13,15 all = 95 degrees

angle 2,4,6,8,10,12,14,16 all = 85 degrees

I know 1 and 3 are vertical angles

3 and 8 are same side interior angle

4 and 14 alternate interior angles

6 and 12 are alternate exterior angles

13 and 9 are corresponding angles

4 and 7 are same side interior angles

I believe these are correct but you might want to double check with some other source

3 0
3 years ago
Hi, how do we do this question?​
Nutka1998 [239]

Answer:

\displaystyle \int {\frac{2x}{3x + 1}} \, dx = \frac{-2(ln|3x + 1| - 3x)}{9} + C

General Formulas and Concepts:

<u>Algebra I</u>

  • Terms/Coefficients
  • Factoring

<u>Algebra II</u>

  • Polynomial Long Division

<u>Calculus</u>

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Multiplied Constant]:                                                           \displaystyle \frac{d}{dx} [cf(x)] = c \cdot f'(x)

Derivative Property [Addition/Subtraction]:                                                         \displaystyle \frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}[f(x)] + \frac{d}{dx}[g(x)]  

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Integration

  • Integrals
  • Integration Constant C
  • Indefinite Integrals

Integration Rule [Reverse Power Rule]:                                                               \displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C

Integration Property [Multiplied Constant]:                                                         \displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

Integration Property [Addition/Subtraction]:                                                       \displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx

Logarithmic Integration

U-Substitution

Step-by-step explanation:

*Note:

You could use u-solve instead of rewriting the integrand to integrate this integral.

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle \int {\frac{2x}{3x + 1}} \, dx

<u>Step 2: Integrate Pt. 1</u>

  1. [Integrand] Rewrite [Polynomial Long Division (See Attachment)]:           \displaystyle \int {\frac{2x}{3x + 1}} \, dx = \int {\bigg( \frac{2}{3} - \frac{2}{3(3x + 1)} \bigg)} \, dx
  2. [Integral] Rewrite [Integration Property - Addition/Subtraction]:               \displaystyle \int {\frac{2x}{3x + 1}} \, dx = \int {\frac{2}{3}} \, dx - \int {\frac{2}{3(3x + 1)}} \, dx
  3. [Integrals] Rewrite [Integration Property - Multiplied Constant]:               \displaystyle \int {\frac{2x}{3x + 1}} \, dx = \frac{2}{3}\int {} \, dx - \frac{2}{3}\int {\frac{1}{3x + 1}} \, dx
  4. [1st Integral] Reverse Power Rule:                                                               \displaystyle \int {\frac{2x}{3x + 1}} \, dx = \frac{2}{3}x - \frac{2}{3}\int {\frac{1}{3x + 1}} \, dx

<u>Step 3: Integrate Pt. 2</u>

<em>Identify variables for u-substitution.</em>

  1. Set <em>u</em>:                                                                                                             \displaystyle u = 3x + 1
  2. [<em>u</em>] Differentiate [Basic Power Rule]:                                                             \displaystyle du = 3 \ dx

<u>Step 4: Integrate Pt. 3</u>

  1. [Integral] Rewrite [Integration Property - Multiplied Constant]:                 \displaystyle \int {\frac{2x}{3x + 1}} \, dx = \frac{2}{3}x - \frac{2}{9}\int {\frac{3}{3x + 1}} \, dx
  2. [Integral] U-Substitution:                                                                               \displaystyle \int {\frac{2x}{3x + 1}} \, dx = \frac{2}{3}x - \frac{2}{9}\int {\frac{1}{u}} \, du
  3. [Integral] Logarithmic Integration:                                                               \displaystyle \int {\frac{2x}{3x + 1}} \, dx = \frac{2}{3}x - \frac{2}{9}ln|u| + C
  4. Back-Substitute:                                                                                            \displaystyle \int {\frac{2x}{3x + 1}} \, dx = \frac{2}{3}x - \frac{2}{9}ln|3x + 1| + C
  5. Factor:                                                                                                           \displaystyle \int {\frac{2x}{3x + 1}} \, dx = -2 \bigg( \frac{1}{9}ln|3x + 1| - \frac{x}{3}  \bigg) + C
  6. Rewrite:                                                                                                         \displaystyle \int {\frac{2x}{3x + 1}} \, dx = \frac{-2(ln|3x + 1| - 3x)}{9} + C

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Integration

Book: College Calculus 10e

8 0
3 years ago
Other questions:
  • Ace bought a jacket for 36 dollars.This was a reduction in the price of 20 percent. What was the original price of the jacket
    11·1 answer
  • Help please!!
    8·2 answers
  • What is the solution set of the quadratic inequality 6x2+1&lt;0
    7·2 answers
  • How do you get an total income
    7·2 answers
  • I'm taking online precalc through cdls, can anyone help me with the assignment for unit 2?
    6·1 answer
  • PLEASE HELP ME THIS IS DUE TODAYYY
    10·1 answer
  • Vendors at a craft fale pay $45 to rent a table for the day Benjamin rents a table at the crati fair
    14·1 answer
  • 12 − (n − 6) = 3(n + 5) what is n ?
    15·1 answer
  • 2k=ak+7<br> Solve for k<br> Show your work
    6·2 answers
  • Find the C.O.P <br> 1. (4,9) <br> 2. (4,12) <br> 3. (5,21)
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!