16.30 and 16.3 equal. If you ever have a problem like that then you just add on a zero.
Example:
19.4500 = 19.45 Just add two zeros on the end
19.45 + two zeros = 1.4500
first off, let's notice the parabola is a vertical one, therefore the squared variable is the x, and the parabola is opening upwards, meaning the coefficient of x² is positive.
let's notice the vertex, or U-turn, is at (-2, 2)
![\bf ~~~~~~\textit{parabola vertex form} \\\\ \begin{array}{llll} \boxed{y=a(x- h)^2+ k}\\\\ x=a(y- k)^2+ h \end{array} \qquad\qquad vertex~~(\stackrel{-2}{ h},\stackrel{2}{ k}) \\\\\\ y=+1[x-(-2)]^2+2\implies y=(x+2)^2+2](https://tex.z-dn.net/?f=%20%5Cbf%20~~~~~~%5Ctextit%7Bparabola%20vertex%20form%7D%20%5C%5C%5C%5C%20%5Cbegin%7Barray%7D%7Bllll%7D%20%5Cboxed%7By%3Da%28x-%20h%29%5E2%2B%20k%7D%5C%5C%5C%5C%20x%3Da%28y-%20k%29%5E2%2B%20h%20%5Cend%7Barray%7D%20%5Cqquad%5Cqquad%20vertex~~%28%5Cstackrel%7B-2%7D%7B%20h%7D%2C%5Cstackrel%7B2%7D%7B%20k%7D%29%20%5C%5C%5C%5C%5C%5C%20y%3D%2B1%5Bx-%28-2%29%5D%5E2%2B2%5Cimplies%20y%3D%28x%2B2%29%5E2%2B2%20)
Answer:
Positive, because the products (3) × (−3) and (−2) × (4) are negative and the product of two negative numbers is positive.
Step-by-step explanation:
Since 1 * -1 = -1, and -1 * -1 = 1, the product of opposite signs produces negative numbers while the product of same signs produces positive numbers. So the product of 1 * 1 * 1 * -1 = -1, while -1 * -1 * -1 * -1 = 1.