Answer:
7 flowers
Step-by-step explanation:divide 7 from each and you'll gat your answer
Answer:
0.6710
Step-by-step explanation:
The diameters of ball bearings are distributed normally. The mean diameter is 107 millimeters and the population standard deviation is 5 millimeters.
Find the probability that the diameter of a selected bearing is between 104 and 115 millimeters. Round your answer to four decimal places.
We solve using z score formula
z = (x-μ)/σ, where
x is the raw score
μ is the population mean = 107 mm
σ is the population standard deviation = 5 mm
For x = 104 mm
z = 104 - 107/5
z = -0.6
Probability value from Z-Table:
P(x = 104) = 0.27425
For x = 115 mm
z = 115 - 107/5
z = 1.6
Probability value from Z-Table:
P(x = 115) = 0.9452
The probability that the diameter of a selected bearing is between 104 and 115 millimeters is calculated as:
P(x = 115) - P(x = 104)
0.9452 - 0.27425
= 0.67095
Approximately = 0.6710
6 : 2/3.....multiply by 3
18 : 2...reduce
9:1 or 9/1
Answer:
The values of x and y in the diagonals of the parallelogram are x=0 and y=5
Step-by-step explanation:
Given that ABCD is a parallelogram
And segment AC=4x+10
From the figure we have the diagonals AC=3x+y and BD=2x+y
By the property of parallelogram the diagonals are congruent
∴ we can equate the diagonals AC=BD
That is 3x+y=2x+y
3x+y-(2x+y)=2x+y-(2x+y)
3x+y-2x-y=2x+y-2x-y
x+0=0 ( by adding the like terms )
∴ x=0
Given that segment AC=4x+10
Substitute x=0 we have AC=4(0)+10
=0+10
=10
∴ AC=10
Now (3x+y)+(2x+y)=10
5x+2y=10
Substitute x=0, 5(0)+2y=10
2y=10

∴ y=5
∴ the values of x and y are x=0 and y=5