Suppose the number of bacteria are increasing exponentially, We can model the number of bacteria at a given time t, using the formula:
f(t)=ae(tk)
where, k=constant of proportionally and a=initial number;
thus;
f(t)=2000e(0.005t)
Therefore the population after 12 hours will be:
f(12)=2000e^(0.005*12)
f(12)=2,123.67=2,123 bacteria
Answer:
The graph in the attached figure
Step-by-step explanation:
we have

This is a linear equation (the graph is a line)
To identify the graph find out the intercepts
<u><em>Find out the y-intercept</em></u>
The y-intercept is the value of y when the value of x is equal to zero
For x=0

The y-intercept is the point (0,-4)
<u><em>Find out the x-intercept</em></u>
The x-intercept is the value of x when the value of y is equal to zero
For y=0



The x-intercept is the point (5.33,0)
therefore
The graph in the attached figure
10+18=28
17+11=28
OR
2x=28 where x=14
4x where x=7
Answer:
⣠⣴⣶⣿⠿⢿⣶⣶⣦⣄⠀⠀⠀⠀ ⠀⠀⠀⠀⠀⣼⡿⠋⠁⠀⠀⠀⢀⣈⠙⢿⣷⡄⠀⠀ ⠀⠀⠀⠀⢸⣿⠁⠀⢀⣴⣿⠿⠿⠿⠿⠿⢿⣷⣄⠀ ⠀⢀⣀⣠⣾⣿⡇⠀⣾⣿⡄⠀⠀⠀⠀⠀⠀⠀⠹⣧ ⣾⡿⠉⠉⣿⠀⡇⠀⠸⣿⡌⠓⠶⠤⣤⡤⠶⢚⣻⡟ . ⣿⣧⠖⠒⣿⡄⡇⠀⠀⠙⢿⣷⣶⣶⣶⣶⣶⢿⣿⠀ . ⣿⡇⠀⠀⣿⡇⢰⠀⠀⠀⠀⠈⠉⠉⠉⠁⠀⠀⣿⠀. ⣿⡇⠀⠀⣿⡇⠈⡄⠀⠀⠀⠀⠀⠀⠀⠀⢀⣿⣿⠀ ⣿⣷⠀⠀⣿⡇⠀⠘⠦⣄⣀⣀⣀⣀⣀⡤⠊⠀⣿⠀ ⢿⣿⣤⣀⣿⡇⠀⠀⠀⢀⣀⣉⡉⠁⣀⡀⠀⣾⡟⠀ ⠀⠉⠛⠛⣿⡇⠀⠀⠀⠀⣿⡟⣿⡟⠋⠀ * ° * • ☆ ° .°• * ✯ ☄ ☆ ★ * ° * °· * . • ° ★ • ☄ ☄ ▁▂▃▄▅▆▇▇▆▅▄▃▁
⣠⣴⣶⣿⠿⢿⣶⣶⣦⣄⠀⠀⠀⠀ ⠀⠀⠀⠀⠀⣼⡿⠋⠁⠀⠀⠀⢀⣈⠙⢿⣷⡄⠀⠀ ⠀⠀⠀⠀⢸⣿⠁⠀⢀⣴⣿⠿⠿⠿⠿⠿⢿⣷⣄⠀ ⠀⢀⣀⣠⣾⣿⡇⠀⣾⣿⡄⠀⠀⠀⠀⠀⠀⠀⠹⣧ ⣾⡿⠉⠉⣿⠀⡇⠀⠸⣿⡌⠓⠶⠤⣤⡤⠶⢚⣻⡟ . ⣿⣧⠖⠒⣿⡄⡇⠀⠀⠙⢿⣷⣶⣶⣶⣶⣶⢿⣿⠀ . ⣿⡇⠀⠀⣿⡇⢰⠀⠀⠀⠀⠈⠉⠉⠉⠁⠀⠀⣿⠀. ⣿⡇⠀⠀⣿⡇⠈⡄⠀⠀⠀⠀⠀⠀⠀⠀⢀⣿⣿⠀ ⣿⣷⠀⠀⣿⡇⠀⠘⠦⣄⣀⣀⣀⣀⣀⡤⠊⠀⣿⠀ ⢿⣿⣤⣀⣿⡇⠀⠀⠀⢀⣀⣉⡉⠁⣀⡀⠀⣾⡟⠀ ⠀⠉⠛⠛⣿⡇⠀⠀⠀⠀⣿⡟⣿⡟⠋⠀ * ° * • ☆ ° .°• * ✯ ☄ ☆ ★ * ° * °· * . • ° ★ • ☄ ☄ ▁▂▃▄▅▆▇▇▆▅▄▃▁
Answer:
11.8845
Step-by-step explanation:
11.8845 to the up and down answer it will be down