Answer:
r - 5 = 2c
r = 75
Step-by-step explanation:
To write an equation for the problem, we first need do declare the value of the number of apps cora has.
Let c = Cora's apps
r - 5 = 2c
r - 5 is used to indicate that Rita deleted 5 apps.
2c is used to represent the twice the number of apps Cora has.
Now you said that Cora had 35 apps.
Let's plug that into the equation.
r - 5 = 2c
r - 5 = 2(35)
r - 5 = 70
Now we transpose the -5 to the other side to leave r.
r = 70 + 5
r = 75
So if Cora has 35 apps, then Rita will have 75 apps.
Answer:
The Slope is 1/4
Step-by-step explanation:
:))))
First you would divide $3532.50 by 2 which would equal $1766.25.
The you would add $225.75 to $1766.25 which equals $1982.
The Friday had $1540.50 taken in & the Sunday game had $1982 taken in.
Hmm, the 2nd derivitve is good for finding concavity
let's find the max and min points
that is where the first derivitive is equal to 0
remember the difference quotient
so
f'(x)=(x^2-2x)/(x^2-2x+1)
find where it equals 0
set numerator equal to 0
0=x^2-2x
0=x(x-2)
0=x
0=x-2
2=x
so at 0 and 2 are the min and max
find if the signs go from negative to positive (min) or from positive to negative (max) at those points
f'(-1)>0
f'(1.5)<0
f'(3)>0
so at x=0, the sign go from positive to negative (local maximum)
at x=2, the sign go from negative to positive (local minimum)
we can take the 2nd derivitive to see the inflection points
f''(x)=2/((x-1)^3)
where does it equal 0?
it doesn't
so no inflection point
but, we can test it at x=0 and x=2
at x=0, we get f''(0)<0 so it is concave down. that means that x=0 being a max makes sense
at x=2, we get f''(2)>0 so it is concave up. that means that x=2 being a max make sense
local max is at x=0 (the point (0,0))
local min is at x=2 (the point (2,4))