1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alina [70]
3 years ago
6

Please someone help me to prove this. ​

Mathematics
2 answers:
liubo4ka [24]3 years ago
6 0

Answer:  see proof below

<u>Step-by-step explanation:</u>

Use the Power Reducing Identity:  sin² Ф = (1 - cos 2Ф)/2

Use the Double Angle Identity:  sin 2Ф = 2 sin Ф · cos Ф

Use the following Sum to Product Identities:

\sin x - \sin y = 2\cos \bigg(\dfrac{x+y}{2}\bigg)\sin \bigg(\dfrac{x-y}{2}\bigg)\\\\\\\cos x - \cos y = -2\sin \bigg(\dfrac{x+y}{2}\bigg)\sin \bigg(\dfrac{x-y}{2}\bigg)

<u>Proof LHS →  RHS</u>

\text{LHS:}\qquad \qquad \qquad \dfrac{\sin^2A-\sin^2B}{\sin A\cos A-\sin B \cos B}

\text{Power Reducing:}\qquad \dfrac{\bigg(\dfrac{1-\cos 2A}{2}\bigg)-\bigg(\dfrac{1-\cos 2B}{2}\bigg)}{\sin A \cos A-\sin B\cos B}

\text{Half-Angle:}\qquad \qquad \dfrac{\bigg(\dfrac{1-\cos 2A}{2}\bigg)-\bigg(\dfrac{1-\cos 2B}{2}\bigg)}{\dfrac{1}{2}\bigg(\sin 2A-\sin 2B\bigg)}

\text{Simplify:}\qquad \qquad \dfrac{1-\cos 2A-1+\cos 2B}{\sin 2A-\sin 2B}\\\\\\.\qquad \qquad \qquad =\dfrac{-\cos 2A+\cos 2B}{\sin 2A - \sin 2B}\\\\\\.\qquad \qquad \qquad =\dfrac{\cos 2B-\cos 2A}{\sin 2A-\sin 2B}

\text{Sum to Product:}\qquad \qquad \dfrac{-2\sin \bigg(\dfrac{2B+2A}{2}\bigg)\sin \bigg(\dfrac{2B-2A}{2}\bigg)}{2\cos \bigg(\dfrac{2A+2B}{2}\bigg)\sin \bigg(\dfrac{2A-2B}{2}\bigg)}

\text{Simplify:}\qquad \qquad \dfrac{-2\sin (A + B)\cdot \sin (-[A - B])}{2\cos (A + B) \cdot \sin (A - B)}

\text{Co-function:}\qquad \qquad \dfrac{2\sin (A + B)\cdot \sin (A - B)}{2\cos (A + B) \cdot \sin (A - B)}

\text{Simplify:}\qquad \qquad \quad \dfrac{\cos (A+B)}{\sin (A+B)}\\\\\\.\qquad \qquad \qquad \quad =\tan (A+B)

LHS = RHS:    tan (A + B) = tan (A + B)    \checkmark

dem82 [27]3 years ago
5 0
<h3><u>Answer</u> :</h3>

We know that,

\dag\bf\:sin^2A=\dfrac{1-cos2A}{2}

\dag\bf\:sin2A=2sinA\:cosA

<u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u>

<u>Now, Let's solve</u> !

\leadsto\:\bf\dfrac{sin^2A-sin^2B}{sinA\:cosA-sinB\:cosB}

\leadsto\:\sf\dfrac{\frac{1-cos2A}{2}-\frac{1-cos2B}{2}}{\frac{2sinA\:cosA}{2}-\frac{2sinB\:cosB}{2}}

\leadsto\:\sf\dfrac{1-cos2A-1+cos2B}{sin2A-sin2B}

\leadsto\:\sf\dfrac{2sin\frac{2A+2B}{2}\:sin\frac{2A-2B}{2}}{2sin\frac{2A-2B}{2}\:cos\frac{2A+2B}{2}}

\leadsto\:\sf\dfrac{sin(A+B)}{cos(A+B)}

\leadsto\:\bf{tan(A+B)}

You might be interested in
The width of a rectangle is 6 inches less than its length , and the area is 40 square inches what arebthe lenght and width of th
DaniilM [7]
Let l and l-6 be the length and width, respectively, of the rectangle. Then:
l(l-6)=40
l²-6l-40=0
(l-10)(l+4)=0
l=10,-4
The rectangle is 10" by 4". ☺☺☺☺
8 0
3 years ago
The rectangle shown has a perimeter of 156 cm and the given area. Its length is 6 more than five times its width.
Stells [14]
P=156 cm
l=6+5w
P=2(l+w)
156=2(6+5w+w)
156=2(6+6w)
156=12+12w
12+12w=156
12w=156-12
12w=144
w=12cm

l=6+5•12
l=6+60
l=66cm
8 0
2 years ago
R+r+2r-r+4r combine like terms and solve
goldenfox [79]

R+r+2r-r+4r

R + r + 2R + 4r = R+7r

R+7r - -r =

R+6r

6 0
3 years ago
Tonya and Pearl each completed a separate proof to show that the alternate interior angles AKL and FLK are congruent. Who comple
Keith_Richards [23]

Answer: Pearl

Step-by-step explanation:

In step 2, she justified her step by the definition of vertical angles. However, angles AKL and GKB do not share a common side, meaning they are not adjacent angles.

4 0
2 years ago
Pls help, algebra 1<br>​
AURORKA [14]

Answer:

20, 35, 50

Step-by-step explanation:

8 0
2 years ago
Other questions:
  • On a scale drawing with a scale of 1 cm = 0.9 m, the height of a tree is 1.2 cm. How tall is the actual tree in meters?
    5·1 answer
  • Which ratio is not equivalent to the other three 2/3 12/15 6/9 1827,
    14·2 answers
  • If f(x) = x^2 + 1 and g(x) = 3x + 1, find 2f(1) + 3g(4)
    8·2 answers
  • You go to a restaurant with 3 friends the total bill is 90% you pay 6% tax and add 20% what do you pay
    5·1 answer
  • The graphs of the quadratic function y= 2x^2and the exponential function y= 2^x are shown below.
    15·1 answer
  • Complete the following.
    7·1 answer
  • The system of equations shown below is graphed on a coordinate grid:
    11·1 answer
  • Which equations have the same value of x as Two-thirds (6 x + 12) = negative 24? Select two options.
    7·2 answers
  • Step-by-step explanation: How many solutions does the system of equations below have?
    9·1 answer
  • <img src="https://tex.z-dn.net/?f=%5Csqrt%7B90%7D%20%2B%5Csqrt%7B90%7D%20%3D%3F" id="TexFormula1" title="\sqrt{90} +\sqrt{90} =?
    14·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!