1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alina [70]
3 years ago
6

Please someone help me to prove this. ​

Mathematics
2 answers:
liubo4ka [24]3 years ago
6 0

Answer:  see proof below

<u>Step-by-step explanation:</u>

Use the Power Reducing Identity:  sin² Ф = (1 - cos 2Ф)/2

Use the Double Angle Identity:  sin 2Ф = 2 sin Ф · cos Ф

Use the following Sum to Product Identities:

\sin x - \sin y = 2\cos \bigg(\dfrac{x+y}{2}\bigg)\sin \bigg(\dfrac{x-y}{2}\bigg)\\\\\\\cos x - \cos y = -2\sin \bigg(\dfrac{x+y}{2}\bigg)\sin \bigg(\dfrac{x-y}{2}\bigg)

<u>Proof LHS →  RHS</u>

\text{LHS:}\qquad \qquad \qquad \dfrac{\sin^2A-\sin^2B}{\sin A\cos A-\sin B \cos B}

\text{Power Reducing:}\qquad \dfrac{\bigg(\dfrac{1-\cos 2A}{2}\bigg)-\bigg(\dfrac{1-\cos 2B}{2}\bigg)}{\sin A \cos A-\sin B\cos B}

\text{Half-Angle:}\qquad \qquad \dfrac{\bigg(\dfrac{1-\cos 2A}{2}\bigg)-\bigg(\dfrac{1-\cos 2B}{2}\bigg)}{\dfrac{1}{2}\bigg(\sin 2A-\sin 2B\bigg)}

\text{Simplify:}\qquad \qquad \dfrac{1-\cos 2A-1+\cos 2B}{\sin 2A-\sin 2B}\\\\\\.\qquad \qquad \qquad =\dfrac{-\cos 2A+\cos 2B}{\sin 2A - \sin 2B}\\\\\\.\qquad \qquad \qquad =\dfrac{\cos 2B-\cos 2A}{\sin 2A-\sin 2B}

\text{Sum to Product:}\qquad \qquad \dfrac{-2\sin \bigg(\dfrac{2B+2A}{2}\bigg)\sin \bigg(\dfrac{2B-2A}{2}\bigg)}{2\cos \bigg(\dfrac{2A+2B}{2}\bigg)\sin \bigg(\dfrac{2A-2B}{2}\bigg)}

\text{Simplify:}\qquad \qquad \dfrac{-2\sin (A + B)\cdot \sin (-[A - B])}{2\cos (A + B) \cdot \sin (A - B)}

\text{Co-function:}\qquad \qquad \dfrac{2\sin (A + B)\cdot \sin (A - B)}{2\cos (A + B) \cdot \sin (A - B)}

\text{Simplify:}\qquad \qquad \quad \dfrac{\cos (A+B)}{\sin (A+B)}\\\\\\.\qquad \qquad \qquad \quad =\tan (A+B)

LHS = RHS:    tan (A + B) = tan (A + B)    \checkmark

dem82 [27]3 years ago
5 0
<h3><u>Answer</u> :</h3>

We know that,

\dag\bf\:sin^2A=\dfrac{1-cos2A}{2}

\dag\bf\:sin2A=2sinA\:cosA

<u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u>

<u>Now, Let's solve</u> !

\leadsto\:\bf\dfrac{sin^2A-sin^2B}{sinA\:cosA-sinB\:cosB}

\leadsto\:\sf\dfrac{\frac{1-cos2A}{2}-\frac{1-cos2B}{2}}{\frac{2sinA\:cosA}{2}-\frac{2sinB\:cosB}{2}}

\leadsto\:\sf\dfrac{1-cos2A-1+cos2B}{sin2A-sin2B}

\leadsto\:\sf\dfrac{2sin\frac{2A+2B}{2}\:sin\frac{2A-2B}{2}}{2sin\frac{2A-2B}{2}\:cos\frac{2A+2B}{2}}

\leadsto\:\sf\dfrac{sin(A+B)}{cos(A+B)}

\leadsto\:\bf{tan(A+B)}

You might be interested in
SOLVE FOR BRAINLIEST PLEASE
grandymaker [24]

<u>Answer</u>:

x = 20

<u>Explanation</u>:

all the interior angles in the triangle is 180°

<u>therefore</u>:

4x - 17° + 71° + 46° = 180°

4x + 100° = 180°

4x = 180° - 100°

4x = 80°

x = 20°

3 0
2 years ago
Read 2 more answers
(1 point) consider the function f(t)=⎧⎩⎨⎪⎪⎪⎪0,−5,−6,6,t&lt;00≤t&lt;11≤t&lt;7t≥7;f(t)={0,t&lt;0−5,0≤t&lt;1−6,1≤t&lt;76,t≥7; 1. wr
sergij07 [2.7K]
f(t)=\begin{cases}0&\text{for }t

Recall that

u(t)=\begin{cases}0&\text{for }t

Take it one piece at a time. For t\ge0, we can scale u(t) by -5:

-5u(t)=\begin{cases}0&\text{for }t

If we shift the argument by 1 and scale by -5, we have

-5u(t-1)=\begin{cases}0&\text{for }t

so if we subtract this from -5u(t), we'll end up with

-5u(t)+5u(t-1)=\begin{cases}0&\text{for }t

For the next piece, we can add another scaled and shifted step like

-6u(t-1)+6u(t-7)=\begin{cases}0&\text{for }t

so that

-5u(t)+5u(t-1)-6u(t-1)+6u(t-7)=\begin{cases}0&\text{for }t

For the last piece, we add one more term:

6u(t-7)=\begin{cases}0&\text{for }t

and so putting everything together, we get f(t):

f(t)\equiv-5u(t)+5u(t-1)-6u(t-1)+6u(t-7)+6u(t-7)
f(t)\equiv-5u(t)-u(t-1)+12u(t-7)
5 0
3 years ago
How do I write 208,000,478 in expanded form
Rama09 [41]

200,000,000

8,000,000

478

all added together

4 0
3 years ago
Read 2 more answers
ONLY ANSWER IF YOU KNOW 100% THAT YOUR'E CORRECT
Goryan [66]

The value that represents the distance between -10 and 5 on a number line is A)  |-15|

<h3>How to solve for the value</h3>

We have the value at the negative end to be = -10, while the given value that we have on the positive end is given as 5

To get the value we would have to solve it as

-10-(+5)

= -10 - 5

= -15

Hence we can conclude that the distance between the values is given as |-15|

Read more on number lines here: brainly.com/question/13400035

#SPJ1

8 0
2 years ago
Which inequality is equivalent to -x &lt; 8?x &lt; 8 x &gt; 8 x &lt; -8 x &gt; -8
grin007 [14]

Answer:

<h2>x > -8 is equivalent to -x < 8</h2>

Step-by-step explanation:

-x < 8     <em>change the signs</em>

x > -8

3 0
4 years ago
Other questions:
  • Which equation correctly rearranges the formula D=rt to find the time it will take her to run around the lake?
    9·1 answer
  • Yoo can someone find the missing input pls n thank uuu
    14·1 answer
  • What’s the solution of 2 plus 2
    10·2 answers
  • 15. The number of girls varied directly as the number of boys and inversely as the number of teachers. When there were 50 girls,
    7·1 answer
  • When the Bureau of Labor Statistics conducts a survey, it begins by partitioning the United States adult population into 2,007 g
    11·1 answer
  • Use the bacteria parable to determine what fraction of the bottle is full at 11:39.
    7·1 answer
  • A regular polygon has 13 sides.Find was he sum of the exterior angle.
    6·1 answer
  • What is the equation of the line parallel to line l that passes through point (3,3)
    11·1 answer
  • Plssssssssssssssss help
    15·2 answers
  • -16 + 12 how this works is that you have to add -16 + 12 and you will get your answer
    12·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!