1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alina [70]
3 years ago
6

Please someone help me to prove this. ​

Mathematics
2 answers:
liubo4ka [24]3 years ago
6 0

Answer:  see proof below

<u>Step-by-step explanation:</u>

Use the Power Reducing Identity:  sin² Ф = (1 - cos 2Ф)/2

Use the Double Angle Identity:  sin 2Ф = 2 sin Ф · cos Ф

Use the following Sum to Product Identities:

\sin x - \sin y = 2\cos \bigg(\dfrac{x+y}{2}\bigg)\sin \bigg(\dfrac{x-y}{2}\bigg)\\\\\\\cos x - \cos y = -2\sin \bigg(\dfrac{x+y}{2}\bigg)\sin \bigg(\dfrac{x-y}{2}\bigg)

<u>Proof LHS →  RHS</u>

\text{LHS:}\qquad \qquad \qquad \dfrac{\sin^2A-\sin^2B}{\sin A\cos A-\sin B \cos B}

\text{Power Reducing:}\qquad \dfrac{\bigg(\dfrac{1-\cos 2A}{2}\bigg)-\bigg(\dfrac{1-\cos 2B}{2}\bigg)}{\sin A \cos A-\sin B\cos B}

\text{Half-Angle:}\qquad \qquad \dfrac{\bigg(\dfrac{1-\cos 2A}{2}\bigg)-\bigg(\dfrac{1-\cos 2B}{2}\bigg)}{\dfrac{1}{2}\bigg(\sin 2A-\sin 2B\bigg)}

\text{Simplify:}\qquad \qquad \dfrac{1-\cos 2A-1+\cos 2B}{\sin 2A-\sin 2B}\\\\\\.\qquad \qquad \qquad =\dfrac{-\cos 2A+\cos 2B}{\sin 2A - \sin 2B}\\\\\\.\qquad \qquad \qquad =\dfrac{\cos 2B-\cos 2A}{\sin 2A-\sin 2B}

\text{Sum to Product:}\qquad \qquad \dfrac{-2\sin \bigg(\dfrac{2B+2A}{2}\bigg)\sin \bigg(\dfrac{2B-2A}{2}\bigg)}{2\cos \bigg(\dfrac{2A+2B}{2}\bigg)\sin \bigg(\dfrac{2A-2B}{2}\bigg)}

\text{Simplify:}\qquad \qquad \dfrac{-2\sin (A + B)\cdot \sin (-[A - B])}{2\cos (A + B) \cdot \sin (A - B)}

\text{Co-function:}\qquad \qquad \dfrac{2\sin (A + B)\cdot \sin (A - B)}{2\cos (A + B) \cdot \sin (A - B)}

\text{Simplify:}\qquad \qquad \quad \dfrac{\cos (A+B)}{\sin (A+B)}\\\\\\.\qquad \qquad \qquad \quad =\tan (A+B)

LHS = RHS:    tan (A + B) = tan (A + B)    \checkmark

dem82 [27]3 years ago
5 0
<h3><u>Answer</u> :</h3>

We know that,

\dag\bf\:sin^2A=\dfrac{1-cos2A}{2}

\dag\bf\:sin2A=2sinA\:cosA

<u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u>

<u>Now, Let's solve</u> !

\leadsto\:\bf\dfrac{sin^2A-sin^2B}{sinA\:cosA-sinB\:cosB}

\leadsto\:\sf\dfrac{\frac{1-cos2A}{2}-\frac{1-cos2B}{2}}{\frac{2sinA\:cosA}{2}-\frac{2sinB\:cosB}{2}}

\leadsto\:\sf\dfrac{1-cos2A-1+cos2B}{sin2A-sin2B}

\leadsto\:\sf\dfrac{2sin\frac{2A+2B}{2}\:sin\frac{2A-2B}{2}}{2sin\frac{2A-2B}{2}\:cos\frac{2A+2B}{2}}

\leadsto\:\sf\dfrac{sin(A+B)}{cos(A+B)}

\leadsto\:\bf{tan(A+B)}

You might be interested in
(GIVING BRAINLIEST) A company rents out 11 food booths and 26 game booths at the county fair. The fee for a food booth is $50 pl
bogdanovich [222]
The answer is 2500+215d

Hope that helps
5 0
3 years ago
H=7+44t-16^2
zalisa [80]

Answer:

When t=2.1753 & t=.5746 , h=27

Don't worry, I got you. Also, my calculator does too.

We set h equal to 27, because we want the height to be 27 when we solve for t.

That leaves us with:

27 = 7 + 44t - 16t^2

Simplify like terms,

20 = 44t - 16t^2

Move 20 onto the right side, so we can use quadratic equation

44t - 16t^2 - 20 = 0 --> -16t^2 + 44t - 20

Using quadratic, you get

t=2.1753 & t=.5746

<u>poster confirmed : "It’s t=2.18 and t=0.57"</u>

3 0
2 years ago
1 tenth is how many times greater than 1 hundredth
Anna35 [415]

Answer:

10

Step-by-step explanation:

1 tenth: 1/10

1 hundredth: 1/100

1/10 = X × 1/100

X = 100/10

X = 10

7 0
3 years ago
Read 2 more answers
if gabby wants to make a regular octagon with a side length of 20 inches of water , how much wire does she need?
EleoNora [17]

Answer:

160 inches

Step-by-step explanation:

An octagon has 8 sides;

20*8=160

4 0
3 years ago
Need some help with multiplying algebraic fractions
Nezavi [6.7K]

Answer:

a=10, b=5, c=2, d=12

Step-by-step explanation:

Multiply each variable together

5*2=10

8*3=24

10x^{3}y^{2}/24x

the coefficients (numbers) can each be divided by 2

5x^{3} y^{2}/12x

subtract the "x" exponents together

5x^{2} y^{2}/12

8 0
3 years ago
Other questions:
  • Leala can write a 500- word essay in an hour. If she writes an essay in 10 minutes, approximately how many words do you think th
    6·1 answer
  • Simplify the ratio:<br><br> 2 1/3 feet : 4 1/2 feet
    12·1 answer
  • The circumference of a circle is divided into twelve equal arcs. The measure of each arc is degrees.
    13·2 answers
  • 9+6a <br> a=7 <br> what is the answer to this expression?
    13·2 answers
  • Wanda made an estimate that the angle below was about . Why did her estimate not correctly describe the angle measurement?
    5·1 answer
  • The percent of working students increased 12.2% to 32.9%, what was the percent prior to the increase?
    5·1 answer
  • Jason takes 2 cl of medicine.how many ml is this.<br> Can someone please help.<br> Thanks
    8·1 answer
  • The endpoints of VW are V(-4,9) and W(1,-6). Find the coordinates of the midpoint M
    12·1 answer
  • If the radius of the circle is 3 cm, what is the measure of the longest chord?
    11·2 answers
  • State if the three numbers can be the measures of the sides of a triangle.
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!