1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alina [70]
3 years ago
6

Please someone help me to prove this. ​

Mathematics
2 answers:
liubo4ka [24]3 years ago
6 0

Answer:  see proof below

<u>Step-by-step explanation:</u>

Use the Power Reducing Identity:  sin² Ф = (1 - cos 2Ф)/2

Use the Double Angle Identity:  sin 2Ф = 2 sin Ф · cos Ф

Use the following Sum to Product Identities:

\sin x - \sin y = 2\cos \bigg(\dfrac{x+y}{2}\bigg)\sin \bigg(\dfrac{x-y}{2}\bigg)\\\\\\\cos x - \cos y = -2\sin \bigg(\dfrac{x+y}{2}\bigg)\sin \bigg(\dfrac{x-y}{2}\bigg)

<u>Proof LHS →  RHS</u>

\text{LHS:}\qquad \qquad \qquad \dfrac{\sin^2A-\sin^2B}{\sin A\cos A-\sin B \cos B}

\text{Power Reducing:}\qquad \dfrac{\bigg(\dfrac{1-\cos 2A}{2}\bigg)-\bigg(\dfrac{1-\cos 2B}{2}\bigg)}{\sin A \cos A-\sin B\cos B}

\text{Half-Angle:}\qquad \qquad \dfrac{\bigg(\dfrac{1-\cos 2A}{2}\bigg)-\bigg(\dfrac{1-\cos 2B}{2}\bigg)}{\dfrac{1}{2}\bigg(\sin 2A-\sin 2B\bigg)}

\text{Simplify:}\qquad \qquad \dfrac{1-\cos 2A-1+\cos 2B}{\sin 2A-\sin 2B}\\\\\\.\qquad \qquad \qquad =\dfrac{-\cos 2A+\cos 2B}{\sin 2A - \sin 2B}\\\\\\.\qquad \qquad \qquad =\dfrac{\cos 2B-\cos 2A}{\sin 2A-\sin 2B}

\text{Sum to Product:}\qquad \qquad \dfrac{-2\sin \bigg(\dfrac{2B+2A}{2}\bigg)\sin \bigg(\dfrac{2B-2A}{2}\bigg)}{2\cos \bigg(\dfrac{2A+2B}{2}\bigg)\sin \bigg(\dfrac{2A-2B}{2}\bigg)}

\text{Simplify:}\qquad \qquad \dfrac{-2\sin (A + B)\cdot \sin (-[A - B])}{2\cos (A + B) \cdot \sin (A - B)}

\text{Co-function:}\qquad \qquad \dfrac{2\sin (A + B)\cdot \sin (A - B)}{2\cos (A + B) \cdot \sin (A - B)}

\text{Simplify:}\qquad \qquad \quad \dfrac{\cos (A+B)}{\sin (A+B)}\\\\\\.\qquad \qquad \qquad \quad =\tan (A+B)

LHS = RHS:    tan (A + B) = tan (A + B)    \checkmark

dem82 [27]3 years ago
5 0
<h3><u>Answer</u> :</h3>

We know that,

\dag\bf\:sin^2A=\dfrac{1-cos2A}{2}

\dag\bf\:sin2A=2sinA\:cosA

<u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u>

<u>Now, Let's solve</u> !

\leadsto\:\bf\dfrac{sin^2A-sin^2B}{sinA\:cosA-sinB\:cosB}

\leadsto\:\sf\dfrac{\frac{1-cos2A}{2}-\frac{1-cos2B}{2}}{\frac{2sinA\:cosA}{2}-\frac{2sinB\:cosB}{2}}

\leadsto\:\sf\dfrac{1-cos2A-1+cos2B}{sin2A-sin2B}

\leadsto\:\sf\dfrac{2sin\frac{2A+2B}{2}\:sin\frac{2A-2B}{2}}{2sin\frac{2A-2B}{2}\:cos\frac{2A+2B}{2}}

\leadsto\:\sf\dfrac{sin(A+B)}{cos(A+B)}

\leadsto\:\bf{tan(A+B)}

You might be interested in
Why are chemical sense called behavioral barriers
iren [92.7K]

Answer:because it works different when you smell a chemical sense from then if you smell a regular sese.

Step-by-step explanation:

A regula sense like a fart might smell bad. But a chemical sense can burn your nostrils and burn you nose hairs causing you not to have good sent or to never smell again

3 0
3 years ago
Write one sine and one cosine equation for each graph below.
pychu [463]

Answer:

Q13. y = sin(2x – π/2); y = - 2cos2x  

Q14. y = 2sin2x -1; y = -2cos(2x – π/2) -1

Step-by-step explanation:

Question 13

(A) Sine function

y = a sin[b(x - h)] + k

y = a sin(bx - bh) + k; bh = phase shift

(1) Amp = 1; a = 1

(2) The graph is symmetrical about the x-axis. k = 0.

(3) Per = π. b = 2

(4) Phase shift = π/2.  

2h =π/2

h = π/4

The equation is

y = sin[2(x – π/4)} or

y = sin(2x – π/2)

B. Cosine function

y = a cos[b(x - h)] + k

y = a cos(bx - bh) + k; bh = phase shift

(1) Amp = 1; a = 1

(2) The graph is symmetrical about the x-axis. k = 0.

(3) Per = π. b = 2

(4) Reflected across x-axis, y ⟶ -y

The equation is y = - 2cos2x  

Question 14

(A) Sine function

(1) Amp = 2; a = 2

(2) Shifted down 1; k = -1

(3) Per = π; b = 2

(4) Phase shift = 0; h = 0

The equation is y = 2sin2x -1

(B) Cosine function

a = 2, b = -1; b = 2

Phase shift = π/2; h = π/4

The equation is

y = -2cos[2(x – π/4)] – 1 or

y = -2cos(2x – π/2) - 1

6 0
3 years ago
What value of x satisfies the equation x + 3 = -(x + 1)? a. x = 8
ludmilkaskok [199]

Answer:

-2

Step-by-step explanation:

x + 3 = -(x + 1)

open the bracket

x + 3 = -x -1

x+x= -1-3

2x= -4

X = -4/2= -2

8 0
3 years ago
Please help its due soon its geometry
Anastasy [175]

Answer:

7, 7, 60, 60, 60

Step-by-step explanation:

When you draw the circles thhey all hhave radius AB so AB=AC=BC =7

and since all sides are congruent you have a equilateral treangle so all angles are equal to 180/3=60

5 0
3 years ago
Find the length of segment AB
user100 [1]

Answer:

96

Step-by-step explanation:

6 0
3 years ago
Read 2 more answers
Other questions:
  • There are 50 tickets in a raffle bag, and 10 of the tickets belong to Gary. A ticket is chosen at random, and the ticket owner's
    11·1 answer
  • Solve the quadratic equation.<br> (x + 1)2 = 16<br> x = 3 or-5<br> x= -3 or 5<br> X = 35
    10·1 answer
  • How do I isolate X here?<br> 4&gt;x-3/-6
    8·1 answer
  • The sales tax in your city is 4.4% and an item costs $3 before tax.How much tax would you pay on that item?
    6·2 answers
  • . In a nature conservatory, the ratio of butterflies to total number of flying insects is 36 to 100.
    14·1 answer
  • Can someone also help me with these math question i suck at math:(
    14·2 answers
  • Look at this coordinate plane
    5·2 answers
  • 8.75 x 10 ^3 in standard form
    14·1 answer
  • Which equation is y = (x + 3)2 + (x + 4)2 rewritten in vertex form?
    6·2 answers
  • Can someone look at this image?
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!