Answer:
(-19, 55)
General Formulas and Concepts:
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
Equality Properties
<u>Algebra I</u>
- Solving systems of equations using substitution/elimination
Step-by-step explanation:
<u>Step 1: Define Systems</u>
y = -3x - 2
5x + 2y = 15
<u>Step 2: Solve for </u><em><u>x</u></em>
<em>Substitution</em>
- Substitute in <em>y</em>: 5x + 2(-3x - 2) = 15
- Distribute 2: 5x - 6x - 4 = 15
- Combine like terms: -x - 4 = 15
- Isolate <em>x</em> term: -x = 19
- Isolate <em>x</em>: x = -19
<u>Step 3: Solve for </u><em><u>y</u></em>
- Define original equation: y = -3x - 2
- Substitute in <em>x</em>: y = -3(-19) - 2
- Multiply: y = 57 - 2
- Subtract: y = 55
Answer:
59.4
Step-by-step explanation:
Answer:
Solve the equation for x by finding a, b, and c of the quadratic then applying the quadratic formula.
Exact Form:
x = − 70 ± √4210/30
Decimal Form:
x = −0.03
Step-by-step explanation:
5x(6x+28)=−23
Step 1: Simplify both sides of the equation.
30x2+140x=−23
Step 2: Subtract -23 from both sides.
30x2+140x−(−23)=−23−(−23)
30x2+140x+23=0
Step 3: Use quadratic formula with a=30, b=140, c=23.
x=−b±√b2−4ac/2a
x=−(140)±√(140)2−4(30)(23)/2(30)
x=−140±√16840/60
x=−7/3+1/30√4210 or x=−7/3+−1/30√4210
2/3 = 8/12
reason:
2/3 * 4/4