The difference is that evaluating an expression for a given value is an example of let’s say In a example, the variable x is equal to 6 since 6 + 6 = 12. So it means that they are giving you the input already. SOLVING an equation is working backwards, to undo everything that has been done to the input. So you have to do the equation in order to find your answer.
Answer:
oof that's gotta suck bro
Considering that the grows at a constant rate we can form an equation where x = how many years after it was planted
and y = its height
Now we just need to find how many feet it grows each year. To do that we just need to compare its height from a certain age to another:
6 years after it was planted : 7 feet,
so x=6 and y = 7
9 years after it was planted: 16 feet
so x= 9 y=16
With thay we can conclude that in 3 years , the tree grew 9 feet. To discover how much the tree grow each year we just nee to divide 9 feet by 3 years which is 3 feet every year.
To write the equatopn now we just need to find the y-intercept which we can discover by setting x to 0:
If in 6 years after the tree was planted it is 7 feet long , we can discover how long it was when it was planted by subtracting 6 years of growth (The slope ) which is 3
7 - 6(years)×3(feet the tree grow each year)
7 - 18 = -11
The tree was -11 feet long when it was planted
which is our y-intercept
( I know it doesnt make sense , but if you apply to a graph it will make more sense )
Now we can make the equation
y = 3x -11
Answer:
simple , isn't it? try to learn