So for this problem we are looking for a sum (total). So first we are going to round 25.65 to 25.7 and round 14.23 to 14.2
Now we are going to add 25.7 and 14.2 to get a total of 39.9
Ethan rode 39.9 kilometers.
The answer to this question is FALSE.
Domain is the set of all the numbers that we can input to the function or that can be used in place of x. The numbers which make the function undefined are excluded from the domain.
In the given exponential function, there is no any value of x which will make the function undefined, so the domain of the function if set of All real numbers. In general, domain of exponential functions is Set of All real numbers.
Answer:
Therefore, the conclusion is valid.
The required diagram is shown below:
Step-by-step explanation:
Consider the provided statement.
Premises: All good students are good readers. Some math students are good students.
Conclusion: Some math students are good readers.
It is given that All good students are good readers, that means all good students are the subset of good readers.
Now, it is given that some math students are good students, that means there exist some math student who are good students as well as good reader.
Therefore, the conclusion is valid.
The required diagram is shown below:
Answer:
66
Step-by-step explanation:
Open the parentheses, 18 + 72 - 16 - 8 = 66
Answer:
the lower right matrix is the third correct choice
Step-by-step explanation:
Your problem statement shows that you have correctly selected the matrices representing the initial problem setup (middle left) and the problem solution (middle right).
Of the remaining matrices, the upper left is an incorrect setup, and the lower left is an incorrect solution matrix.
__
We notice that in the remaining matrices on the right that the (2,3) term is 0, and the (3,2) and (3,3) terms are both 1.
The easiest way to get a 0 in the 3rd column of row 2 is to add the first row to the second. When you do that, you get ...
![\left[\begin{array}{ccc|c}1&1&1&29000\\1+2&1-3&1-1&1000(29+1)\\0&0.15&0.15&2100\end{array}\right] =\left[\begin{array}{ccc|c}1&1&1&29000\\3&-2&0&30000\\0&0.15&0.15&2100\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Cc%7D1%261%261%2629000%5C%5C1%2B2%261-3%261-1%261000%2829%2B1%29%5C%5C0%260.15%260.15%262100%5Cend%7Barray%7D%5Cright%5D%20%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Cc%7D1%261%261%2629000%5C%5C3%26-2%260%2630000%5C%5C0%260.15%260.15%262100%5Cend%7Barray%7D%5Cright%5D)
Already, we see that the second row matches that in the lower right matrix.
The easiest way to get 1's in the last row is to divide that row by 0.15. When we do that, the (3,4) entry becomes 2100/0.15 = 14000, matching exactly the lower right matrix.
The correct choices here are the two you have selected, and <em>the lower right matrix</em>.