1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Luden [163]
3 years ago
6

CALLING ALL MATHS GENIUSES

Mathematics
2 answers:
erastova [34]3 years ago
7 0
Area is length times width
(X+9)(X-1)
X^2+8x-9
s2008m [1.1K]3 years ago
3 0
Got you. So we will use the basic formula for the area of a rectangle and insert variable values. (^_^)

Area= Width(Height)   ----------- Insert values of width and height [width = (x-1)
, height = (x+9)]

Area= (x-1)(x+9) )   -------------- Then expand if needed?
       = x² +8x -9
 
You might be interested in
Use partial products to multiply 2,104 x 8. 2,104 32 8 x 4 ones 0 8 x 0 tens N 1 hundreds 8 x 2 thousands - 16.000​
xeze [42]

9514 1404 393

Answer:

  16832

Step-by-step explanation:

As your problem statement says, ...

  2104 × 8 = 4×8 +00×8 +100×8 +2000×8

  = 32 +0 +800 +16000

  = 16,832

7 0
3 years ago
Chloe is packing up her room to move to a new city. Together, all the books on her bookshelf weigh 85 pounds. She wants to divid
agasfer [191]
She will need 25 pounds 4 ounces in each box
6 0
3 years ago
What is the absolute value of 6.7
Aleonysh [2.5K]
The absolute value of 6.7 is 6.7
6 0
3 years ago
Read 2 more answers
Solve. Good luck! Please do not try to google this.
Elena L [17]
\frac{x^{2} + x - 2}{6x^{2} - 3x} = \sqrt{2x} + \frac{3x^{2}}{2}
\frac{x^{2} + 2x - x - 2}{3x(x) - 3x(1)} = \frac{2\sqrt{2x}}{2} + \frac{3x^{2}}{2}
\frac{x(x) + x(2) - 1(x) - 1(2)}{3x(x - 1)} = \frac{2\sqrt{2x} + 3x^{2}}{2}
\frac{x(x + 2) - 1(x + 2)}{3x(2x - 1)} = \frac{2\sqrt{2x} + 3x^{2}}{2}
\frac{(x - 1)(x + 2)}{3x(2x - 1)} = \frac{2\sqrt{2x} + 3x^{2}}{2}
\frac{(x - 1)(x + 2)}{3x(2x - 1)} = \frac{2\sqrt{2x} + 3x^{2}}{2}
3x(2x - 1)(2\sqrt{2x} + 3x^{2}) = 2(x + 2)(x - 1)
3x(2x(2\sqrt{2x} + 3x^{2}) - 1(2\sqrt{2x} + 3x^{2}) = 2(x(x - 1) + 2(x - 1))
3x(2x(2\sqrt{2x}) + 2x(3x^{2}) - 1(2\sqrt{2x}) - 1(3x^{2})) = 2(x(x) - x(1) + 2(x) - 2(1)
3x(4x\sqrt{2x} + 6x^{3} - 2\sqrt{2x} - 3x^{2}) = 2(x^{2} - x + 2x - 2)
3x(4x\sqrt{2x} - 2\sqrt{2x} + 6x^{3} - 3x^{2}) = 2(x^{2} + x - 2)
3x(4x\sqrt{2x}) - 3x(2\sqrt{2x}) + 3x(6x^{3}) - 3x(3x^{2}) = 2(x^{2}) + 2(x) - 2(2)
12x^{2}\sqrt{2x} - 6x\sqrt{2x} + 18x^{4} - 9x^{3} = 2x^{2} + 2x - 4
12x^{2}\sqrt{2x} - 6x\sqrt{2x} = -18x^{4} + 9x^{3} + 2x^{2} + 2x - 4
6x\sqrt{2x}(2x) - 6x\sqrt{2x}(1) = -9x^{3}(2x) - 9x^{3}(-1) + 2(x^{2}) + 2(x) - 2(2)
6x\sqrt{2x}(2x - 1) = -9x^{3}(2x - 1) + 2(x^{2} + x - 2)
5 0
3 years ago
Lucy and Emily are racing with each other and Lucy is 90
Zina [86]

Using the <em>system of equation</em> created, Emily will catch up Lucy after 30 seconds

Given the Parameters :

  • Lucy's distance = 2t
  • Emily's distance = 5t

<u>We can set up an equation to represent the required scenario thus</u> :

Emily's distance = Lucy's distance + 90

5t = 2t + 90

We solve for t

<em>Collect like terms</em> :

5t - 2t = 90

3t = 90

Divide both sides by 3 to isolate t

t = 90/3

t = 30

Therefore, Emily will catch up with Lucy after 30 seconds

Learn more :brainly.com/question/13218948

8 0
2 years ago
Other questions:
  • The Audubon Society at Enormous State University (ESU) is planning its annual fund raising "Eat-a-thon." The society will charge
    13·1 answer
  • A card is drawn at random from a deck. what is the probability that it is an ace or a king?
    15·1 answer
  • I need help with solving #22
    11·2 answers
  • What ahsjsjjkananenhsha
    6·2 answers
  • 20/60+15/60=35/60&gt;<br> What dose it equal
    9·1 answer
  • Solve:<br> (1 1/3) 24 = 32<br> b: 875 + 61/2=<br> 1/2x + 31/2y=<br> 91/5x +91/5= <br> Please help me
    15·1 answer
  • Pls help with this problem!
    15·1 answer
  • Please helppppppppp :((((((((((((((((((
    14·2 answers
  • ANSWER PLS!! HELP! WILL GIVE BRAINLIEST
    12·2 answers
  • I really need help with this.<br><br> Please and thank you.
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!