Short answer: I don't know, but that doesn't mean I can't give you something that you can decide for yourself.
y = 4*2^(2n - 2) is the pattern.
Go for broke. Try n = 4. You should get 256. Let's try it.
y = 4 * 2^(2*4 - 2)
y = 4 * 2^(8 - 2)
y = 4 * 2^6
y = 4 * 64
y = 256 yup it works.
The other end is just as important. Suppose n = 1
Then y = 4 * 2^(2*1 - 2) = 4 * 2^0 = 4*1 = 4 Both work.
If this formula is correct, we can abbreviate it to make your task easier.
y = 4 * 2^(2n - 2)
y = 2^2 * 2^(2n - 2)
y = 2^(2n - 2 + 2)
y = 2^(2n) Now try the two end points again.
n = 4
y = 2^(2*4)
y = 2^8
y = 256
n = 1
y = 2^(2*1)
y = 2^2
y = 4 which again checks.
so y = 2^(2n) I think is an exponential function.
Sorry my explanation is so long.
Let's look at the corresponding ratios:

And we see that the three aren't equal.
Hence, $\Delta ABC$ and $\Delta EDC$ are not similar.
Answer: Complain
Step-by-step explanation:
Gripe- express a complaint or grumble about something, especially something trivial.
<em><u>The inequality can be used to find the interval of time taken by the object to reach the height greater than 300 feet above the ground is:</u></em>

<em><u>Solution:</u></em>
<em><u>The object falls, its distance, d, above the ground after t seconds, is given by the formula:</u></em>

To find the time interval in which the object is at a height greater than 300 ft
Frame a inequality,

Solve the inequality
Subtract 1000 from both sides


Time cannot be negative
Therefore,
t < 6.61
And the inequality used is: 
Answer:
A, C, D
Step-by-step explanation:
A, C, D